File size: 4,835 Bytes
1c58e99
 
0ee947b
1c58e99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1ba8e7
 
1c58e99
 
 
 
 
 
 
21eea14
1c58e99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6b2396
 
1c58e99
 
b6b2396
1c58e99
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
os.system('pip install tensorflow')
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

import json
import numpy as np
import gradio as gr
import tensorflow as tf
from tensorflow import keras
from huggingface_hub.keras_mixin import from_pretrained_keras

num_samples = 10000
data_path = 'fra.txt'

input_texts = []
target_texts = []
input_characters = set()
target_characters = set()

with open(data_path, "r", encoding="utf-8") as f:
    lines = f.read().split("\n")
for line in lines[: min(num_samples, len(lines) - 1)]:
    input_text, target_text, _ = line.split("\t")
    # We use "tab" as the "start sequence" character
    # for the targets, and "\n" as "end sequence" character.
    target_text = "\t" + target_text + "\n"
    input_texts.append(input_text)
    target_texts.append(target_text)
    for char in input_text:
        if char not in input_characters:
            input_characters.add(char)
    for char in target_text:
        if char not in target_characters:
            target_characters.add(char)

input_characters = sorted(list(input_characters))
target_characters = sorted(list(target_characters))

input_token_index = dict([(char, i) for i, char in enumerate(input_characters)])
target_token_index = dict([(char, i) for i, char in enumerate(target_characters)])

num_encoder_tokens = len(input_characters)
num_decoder_tokens = len(target_characters)
max_encoder_seq_length = max([len(txt) for txt in input_texts])
max_decoder_seq_length = max([len(txt) for txt in target_texts])

model = from_pretrained_keras("keras-io/cl_s2s")
print(model.summary())
latent_dim = 256

encoder_inputs = model.input[0]  # input_1
encoder_outputs, state_h_enc, state_c_enc = model.layers[2].output  # lstm_1
encoder_states = [state_h_enc, state_c_enc]
encoder_model = keras.Model(encoder_inputs, encoder_states)

decoder_inputs = tf.identity(model.input[1])  # input_2
decoder_state_input_h = keras.Input(shape=(latent_dim,))
decoder_state_input_c = keras.Input(shape=(latent_dim,))
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
decoder_lstm = model.layers[3]
decoder_outputs, state_h_dec, state_c_dec = decoder_lstm(
    decoder_inputs, initial_state=decoder_states_inputs
)
decoder_states = [state_h_dec, state_c_dec]
decoder_dense = model.layers[4]
decoder_outputs = decoder_dense(decoder_outputs)
decoder_model = keras.Model(
    [decoder_inputs] + decoder_states_inputs, [decoder_outputs] + decoder_states
)

# Reverse-lookup token index to decode sequences back to
# something readable.
reverse_input_char_index = dict((i, char) for char, i in input_token_index.items())
reverse_target_char_index = dict((i, char) for char, i in target_token_index.items())


def decode_sequence(input_seq):
    # Encode the input as state vectors.

    input_seq2 = list()
    input_seq2.append(input_seq)

    infer_input_data = np.zeros((len(input_seq2), max_encoder_seq_length, num_encoder_tokens), dtype="float32")

    for i, (input_text) in enumerate((input_seq2)):
        for t, char in enumerate(input_text):
            infer_input_data[i, t, input_token_index[char]] = 1.0
        infer_input_data[i, t + 1:, input_token_index[" "]] = 1.0

    states_value = encoder_model.predict(infer_input_data)

    # Generate empty target sequence of length 1.
    target_seq = np.zeros((1, 1, num_decoder_tokens))
    # Populate the first character of target sequence with the start character.
    target_seq[0, 0, target_token_index["\t"]] = 1.0

    # Sampling loop for a batch of sequences
    # (to simplify, here we assume a batch of size 1).
    stop_condition = False
    decoded_sentence = ""
    while not stop_condition:
        output_tokens, h, c = decoder_model.predict([target_seq] + states_value)

        # Sample a token
        sampled_token_index = np.argmax(output_tokens[0, -1, :])
        sampled_char = reverse_target_char_index[sampled_token_index]
        decoded_sentence += sampled_char

        # Exit condition: either hit max length
        # or find stop character.
        if sampled_char == "\n" or len(decoded_sentence) > max_decoder_seq_length:
            stop_condition = True

        # Update the target sequence (of length 1).
        target_seq = np.zeros((1, 1, num_decoder_tokens))
        target_seq[0, 0, sampled_token_index] = 1.0

        # Update states
        states_value = [h, c]

    return decoded_sentence


input_1 = gr.Textbox(lines=2)
output_1 = gr.Textbox()

iface = gr.Interface(decode_sequence,
                     inputs=input_1, outputs=output_1,
                     examples=[["Be kind."],
                               ["Hug me."]],
                     title="Character Level Recurrent Seq2Seq Model",
                     article="Author: <a href=\"https://huggingface.co/reichenbach\">Rishav Chandra Varma</a>")

iface.launch(debug=True)