File size: 9,237 Bytes
49e0d56
 
9f18954
49e0d56
9f18954
49e0d56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88c7545
49e0d56
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
056fee9
49e0d56
88c7545
49e0d56
cb208a9
 
 
62dcfbd
cb208a9
88c7545
 
 
 
49e0d56
aa33259
88c7545
aa33259
 
056fee9
64a1b11
2fd8016
 
aa33259
88c7545
2fd8016
 
aa33259
88c7545
aa33259
cb208a9
 
 
 
 
 
 
 
02d1859
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import streamlit as st
import tensorflow as tf
import numpy as np

# Setting random seed to obtain reproducible results.
tf.random.set_seed(42)

# Initialize global variables.
AUTO = tf.data.AUTOTUNE
BATCH_SIZE = 1
NUM_SAMPLES = 32
POS_ENCODE_DIMS = 16
EPOCHS = 20
H = 100
W = 100
focal = 138.88

def encode_position(x):
    """Encodes the position into its corresponding Fourier feature.

    Args:
        x: The input coordinate.

    Returns:
        Fourier features tensors of the position.
    """
    positions = [x]
    for i in range(POS_ENCODE_DIMS):
        for fn in [tf.sin, tf.cos]:
            positions.append(fn(2.0 ** i * x))
    return tf.concat(positions, axis=-1)


def get_rays(height, width, focal, pose):
    """Computes origin point and direction vector of rays.

    Args:
        height: Height of the image.
        width: Width of the image.
        focal: The focal length between the images and the camera.
        pose: The pose matrix of the camera.

    Returns:
        Tuple of origin point and direction vector for rays.
    """
    # Build a meshgrid for the rays.
    i, j = tf.meshgrid(
        tf.range(width, dtype=tf.float32),
        tf.range(height, dtype=tf.float32),
        indexing="xy",
    )

    # Normalize the x axis coordinates.
    transformed_i = (i - width * 0.5) / focal

    # Normalize the y axis coordinates.
    transformed_j = (j - height * 0.5) / focal

    # Create the direction unit vectors.
    directions = tf.stack([transformed_i, -transformed_j, -tf.ones_like(i)], axis=-1)

    # Get the camera matrix.
    camera_matrix = pose[:3, :3]
    height_width_focal = pose[:3, -1]

    # Get origins and directions for the rays.
    transformed_dirs = directions[..., None, :]
    camera_dirs = transformed_dirs * camera_matrix
    ray_directions = tf.reduce_sum(camera_dirs, axis=-1)
    ray_origins = tf.broadcast_to(height_width_focal, tf.shape(ray_directions))

    # Return the origins and directions.
    return (ray_origins, ray_directions)


def render_flat_rays(ray_origins, ray_directions, near, far, num_samples, rand=False):
    """Renders the rays and flattens it.

    Args:
        ray_origins: The origin points for rays.
        ray_directions: The direction unit vectors for the rays.
        near: The near bound of the volumetric scene.
        far: The far bound of the volumetric scene.
        num_samples: Number of sample points in a ray.
        rand: Choice for randomising the sampling strategy.

    Returns:
       Tuple of flattened rays and sample points on each rays.
    """
    # Compute 3D query points.
    # Equation: r(t) = o+td -> Building the "t" here.
    t_vals = tf.linspace(near, far, num_samples)
    if rand:
        # Inject uniform noise into sample space to make the sampling
        # continuous.
        shape = list(ray_origins.shape[:-1]) + [num_samples]
        noise = tf.random.uniform(shape=shape) * (far - near) / num_samples
        t_vals = t_vals + noise

    # Equation: r(t) = o + td -> Building the "r" here.
    rays = ray_origins[..., None, :] + (
        ray_directions[..., None, :] * t_vals[..., None]
    )
    rays_flat = tf.reshape(rays, [-1, 3])
    rays_flat = encode_position(rays_flat)
    return (rays_flat, t_vals)


def map_fn(pose):
    """Maps individual pose to flattened rays and sample points.

    Args:
        pose: The pose matrix of the camera.

    Returns:
        Tuple of flattened rays and sample points corresponding to the
        camera pose.
    """
    (ray_origins, ray_directions) = get_rays(height=H, width=W, focal=focal, pose=pose)
    (rays_flat, t_vals) = render_flat_rays(
        ray_origins=ray_origins,
        ray_directions=ray_directions,
        near=2.0,
        far=6.0,
        num_samples=NUM_SAMPLES,
        rand=True,
    )
    return (rays_flat, t_vals)


def render_rgb_depth(model, rays_flat, t_vals, rand=True, train=True):
    """Generates the RGB image and depth map from model prediction.

    Args:
        model: The MLP model that is trained to predict the rgb and
            volume density of the volumetric scene.
        rays_flat: The flattened rays that serve as the input to
            the NeRF model.
        t_vals: The sample points for the rays.
        rand: Choice to randomise the sampling strategy.
        train: Whether the model is in the training or testing phase.

    Returns:
        Tuple of rgb image and depth map.
    """
    # Get the predictions from the nerf model and reshape it.
    if train:
        predictions = model(rays_flat)
    else:
        predictions = model.predict(rays_flat)
    predictions = tf.reshape(predictions, shape=(BATCH_SIZE, H, W, NUM_SAMPLES, 4))

    # Slice the predictions into rgb and sigma.
    rgb = tf.sigmoid(predictions[..., :-1])
    sigma_a = tf.nn.relu(predictions[..., -1])

    # Get the distance of adjacent intervals.
    delta = t_vals[..., 1:] - t_vals[..., :-1]
    # delta shape = (num_samples)
    if rand:
        delta = tf.concat(
            [delta, tf.broadcast_to([1e10], shape=(BATCH_SIZE, H, W, 1))], axis=-1
        )
        alpha = 1.0 - tf.exp(-sigma_a * delta)
    else:
        delta = tf.concat(
            [delta, tf.broadcast_to([1e10], shape=(BATCH_SIZE, 1))], axis=-1
        )
        alpha = 1.0 - tf.exp(-sigma_a * delta[:, None, None, :])

    # Get transmittance.
    exp_term = 1.0 - alpha
    epsilon = 1e-10
    transmittance = tf.math.cumprod(exp_term + epsilon, axis=-1, exclusive=True)
    weights = alpha * transmittance
    rgb = tf.reduce_sum(weights[..., None] * rgb, axis=-2)

    if rand:
        depth_map = tf.reduce_sum(weights * t_vals, axis=-1)
    else:
        depth_map = tf.reduce_sum(weights * t_vals[:, None, None], axis=-1)
    return (rgb, depth_map)


def get_translation_t(t):
    """Get the translation matrix for movement in t."""
    matrix = [
        [1, 0, 0, 0],
        [0, 1, 0, 0],
        [0, 0, 1, t],
        [0, 0, 0, 1],
    ]
    return tf.convert_to_tensor(matrix, dtype=tf.float32)


def get_rotation_phi(phi):
    """Get the rotation matrix for movement in phi."""
    matrix = [
        [1, 0, 0, 0],
        [0, tf.cos(phi), -tf.sin(phi), 0],
        [0, tf.sin(phi), tf.cos(phi), 0],
        [0, 0, 0, 1],
    ]
    return tf.convert_to_tensor(matrix, dtype=tf.float32)


def get_rotation_theta(theta):
    """Get the rotation matrix for movement in theta."""
    matrix = [
        [tf.cos(theta), 0, -tf.sin(theta), 0],
        [0, 1, 0, 0],
        [tf.sin(theta), 0, tf.cos(theta), 0],
        [0, 0, 0, 1],
    ]
    return tf.convert_to_tensor(matrix, dtype=tf.float32)


def pose_spherical(theta, phi, t):
    """
    Get the camera to world matrix for the corresponding theta, phi
    and t.
    """
    c2w = get_translation_t(t)
    c2w = get_rotation_phi(phi / 180.0 * np.pi) @ c2w
    c2w = get_rotation_theta(theta / 180.0 * np.pi) @ c2w
    c2w = np.array([[-1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]) @ c2w
    return c2w


def show_rendered_image(r,theta,phi):
    # Get the camera to world matrix.
    c2w = pose_spherical(theta, phi, r)

    ray_oris, ray_dirs = get_rays(H, W, focal, c2w)
    rays_flat, t_vals = render_flat_rays(
        ray_oris, ray_dirs, near=2.0, far=6.0, num_samples=NUM_SAMPLES, rand=False
    )

    rgb, depth = render_rgb_depth(
        nerf_loaded, rays_flat[None, ...], t_vals[None, ...], rand=False, train=False
    )
    return(rgb[0], depth[0])


# app.py text matter starts here
st.title('NeRF:3D volumetric rendering with NeRF')
st.markdown("Authors: [Aritra Roy Gosthipathy](https://twitter.com/ariG23498) and [Ritwik Raha](https://twitter.com/ritwik_raha)")
st.markdown("## Description")
st.markdown("[NeRF](https://arxiv.org/abs/2003.08934) proposes an ingenious way to synthesize novel views of a scene by modelling the volumetric scene function through a neural network.")
st.markdown("## Interactive Demo")

# load the pre-trained model
nerf_loaded = tf.keras.models.load_model("nerf", compile=False)

# set the values of r theta phi
r = 4.0
theta = st.slider("Enter a value for Θ:", min_value=0.0, max_value=360.0)
phi = -30.0
color, depth = show_rendered_image(r, theta, phi)

col1, col2= st.columns(2)

with col1:
    color = tf.keras.utils.array_to_img(color)
    st.image(color, caption="Color Image", clamp=True, width=300)

with col2:
    depth = tf.keras.utils.array_to_img(depth[..., None])
    st.image(depth, caption="Depth Map", clamp=True, width=300)

st.markdown("## Tutorials")  
st.markdown("- [Keras](https://keras.io/examples/vision/nerf/)")
st.markdown("- [PyImageSearch NeRF 1](https://www.pyimagesearch.com/2021/11/10/computer-graphics-and-deep-learning-with-nerf-using-tensorflow-and-keras-part-1/)")
st.markdown("- [PyImageSearch NeRF 2](https://www.pyimagesearch.com/2021/11/17/computer-graphics-and-deep-learning-with-nerf-using-tensorflow-and-keras-part-2/)")
st.markdown("- [PyImageSearch NeRF 3](https://www.pyimagesearch.com/2021/11/24/computer-graphics-and-deep-learning-with-nerf-using-tensorflow-and-keras-part-3/)")

st.markdown("## Credits")  
st.markdown("- [PyImageSearch](https://www.pyimagesearch.com/)")
st.markdown("- [JarvisLabs.ai GPU credits](https://jarvislabs.ai/)")