File size: 2,771 Bytes
5831693
 
 
 
 
 
04af290
5831693
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9a09c6
5831693
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import numpy as np
import tensorflow as tf
import gradio as gr
from huggingface_hub import from_pretrained_keras
import cv2

model = from_pretrained_keras("keras-io/deeplabv3p-resnet50")

colormap = np.array([[0,0,0], [31,119,180], [44,160,44], [44, 127, 125], [52, 225, 143],
                    [217, 222, 163], [254, 128, 37], [130, 162, 128], [121, 7, 166], [136, 183, 248],
                    [85, 1, 76], [22, 23, 62], [159, 50, 15], [101, 93, 152], [252, 229, 92],
                    [167, 173, 17], [218, 252, 252], [238, 126, 197], [116, 157, 140], [214, 220, 252]], dtype=np.uint8)
                    
img_size = 512
                    
def read_image(image):
    image = tf.convert_to_tensor(image)
    image.set_shape([None, None, 3])
    image = tf.image.resize(images=image, size=[img_size, img_size])
    image = image / 127.5 - 1
    return image

def infer(model, image_tensor):
    predictions = model.predict(np.expand_dims((image_tensor), axis=0))
    predictions = np.squeeze(predictions)
    predictions = np.argmax(predictions, axis=2)
    return predictions

def decode_segmentation_masks(mask, colormap, n_classes):
    r = np.zeros_like(mask).astype(np.uint8)
    g = np.zeros_like(mask).astype(np.uint8)
    b = np.zeros_like(mask).astype(np.uint8)
    for l in range(0, n_classes):
        idx = mask == l
        r[idx] = colormap[l, 0]
        g[idx] = colormap[l, 1]
        b[idx] = colormap[l, 2]
    rgb = np.stack([r, g, b], axis=2)
    return rgb

def get_overlay(image, colored_mask):
    image = tf.keras.preprocessing.image.array_to_img(image)
    image = np.array(image).astype(np.uint8)
    overlay = cv2.addWeighted(image, 0.35, colored_mask, 0.65, 0)
    return overlay

def segmentation(input_image):
    image_tensor = read_image(input_image)
    prediction_mask = infer(image_tensor=image_tensor, model=model)
    prediction_colormap = decode_segmentation_masks(prediction_mask, colormap, 20)
    overlay = get_overlay(image_tensor, prediction_colormap)
    return (overlay, prediction_colormap)

i = gr.inputs.Image()
o = [gr.outputs.Image(), gr.outputs.Image()]

examples = [["example_image_1.jpg"], ["example_image_2.jpg"], ["example_image_3.jpg"]]
title = "Human Part Segmentation"
description = "Upload an image or select from examples to segment out different human parts."

article = "<div style='text-align: center;'><a href='https://twitter.com/SatpalPatawat' target='_blank'>Space by Satpal Singh Rathore</a><br><a href='https://keras.io/examples/vision/deeplabv3_plus/' target='_blank'>Keras example by Soumik Rakshit</a></div>"
gr.Interface(segmentation, i, o, examples=examples, allow_flagging=False, analytics_enabled=False,
  title=title, description=description, article=article).launch(enable_queue=True)