Spaces:
Runtime error
Runtime error
File size: 3,009 Bytes
befbd95 df1443b befbd95 4b87396 befbd95 4b87396 befbd95 02d6aa6 befbd95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
from huggingface_hub import from_pretrained_keras
import keras_cv
import gradio as gr
from tensorflow import keras
keras.mixed_precision.set_global_policy("mixed_float16")
# load keras model
resolution = 512
dreambooth_model = keras_cv.models.StableDiffusion(
img_width=resolution, img_height=resolution, jit_compile=True,
)
loaded_diffusion_model = from_pretrained_keras("keras-dreambooth/ignatius")
dreambooth_model._diffusion_model = loaded_diffusion_model
# generate images
def generate_images(prompt, negative_prompt, num_imgs_to_gen, num_steps, guidance_scale):
"""
This function is used to generate images using our fine-tuned keras dreambooth stable diffusion model.
Args:
prompt (str): The text input given by the user based on which images will be generated.
negative_prompt (srt): The text to eliminate from the generation some concepts.
num_imgs_to_gen (int): The number of images to be generated using given prompt.
num_steps (int): The number of denoising steps
guidance_scale (double): Increasing guidance makes generation follow more closely to the prompt.
Returns:
generated_img (List): List of images that were generated using the model
"""
generated_images = dreambooth_model.text_to_image(
prompt,
negative_prompt=negative_prompt,
batch_size=num_imgs_to_gen,
num_steps=num_steps,
unconditional_guidance_scale=guidance_scale
)
return generated_images
with gr.Blocks() as demo:
gr.HTML("<h2 style=\"font-size: 2em; font-weight: bold\" align=\"center\">Ignatius Farray - The cavern of the muffled scream</h2>")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(lines=1, value="ignatius in a standup comedy spectacle", label="Base Prompt")
negative_prompt = gr.Textbox(lines=1, value="bad anatomy, blurry, ugly, deformed", label="Negative Prompt")
samples = gr.Slider(minimum=1, maximum=10, default=1, step=1, label="Number of Image")
num_steps = gr.Slider(label="Inference Steps", value=50, maximum=450)
guidance_scale = gr.Number(label="Guidance scale", value=7.5)
run = gr.Button(value="Run")
with gr.Column():
gallery = gr.Gallery(label="Outputs").style(grid=(1,2))
run.click(generate_images, inputs=[prompt, negative_prompt, samples, num_steps, guidance_scale], outputs=gallery)
gr.Examples([["ignatius on the moon","bad anatomy, blurry, ugly", 2, 150, 15],
["A photo of ignatius person inside a box","bad anatomy, blurry, ugly", 2, 150, 15],
["A closeup portrait of ignatius, highly detailed, high qulity","bad anatomy, blurry, ugly", 2, 150, 15]],
[prompt, negative_prompt, samples, num_steps, guidance_scale], gallery, generate_images)
gr.Markdown('\n Demo created by: <a href=\"https://huggingface.co/matallanas/\">Eduardo Matallanas</a>')
demo.launch(debug=True) |