File size: 5,306 Bytes
d9c331d
03055f8
645f954
783125d
 
 
f1c0b37
03055f8
d9c331d
 
f1c0b37
 
b4fabad
f3eb48f
 
783125d
b4fabad
c8b1bf4
 
74c2772
 
783125d
74c2772
 
 
 
 
 
 
694f32d
 
783125d
 
 
 
 
 
 
 
74c2772
 
33e0372
783125d
 
694f32d
783125d
 
 
 
 
 
 
 
74c2772
 
783125d
 
 
694f32d
03055f8
 
 
 
 
 
 
 
bc9a8f6
 
 
783125d
bc9a8f6
 
 
56a8823
29593cd
bc9a8f6
 
03055f8
 
 
bc9a8f6
03055f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
783125d
 
03055f8
 
 
74c2772
 
03055f8
 
 
74c2772
03055f8
 
 
74c2772
 
 
 
03055f8
74c2772
 
 
 
 
 
 
 
03055f8
 
 
 
74c2772
03055f8
 
 
 
 
 
 
74c2772
03055f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74c2772
03055f8
 
 
f1c0b37
d9c331d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
from fastapi import FastAPI
import gradio as gr
import torch
from sd import pipeline
from sd import model_loader
from transformers import AutoTokenizer
from diffusers import StableDiffusionPipeline

app = FastAPI()

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

tokenizer = AutoTokenizer.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="tokenizer")
weights_url = "https://huggingface.co/runwayml/stable-diffusion-v1-5/resolve/main/v1-5-pruned-emaonly.ckpt"
models = model_loader.from_pretrained(weights_url, device)

pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", use_safetensors=True)
pipe = pipe.to(device)

MIN_IMAGE_SIZE = 256
MAX_IMAGE_SIZE = 1024

MAX_SEED = 2147483647 # 2^31 - 1

def generate_image(prompt, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, model, width, height):

    if randomize_seed:
        seed = torch.randint(0, MAX_SEED, (1,)).item()
        
    generator = torch.Generator(device=device).manual_seed(seed)

    if model == "from-scratch":
        image = pipeline.generate(
            prompt=prompt,
            uncond_prompt=negative_prompt,
            input_image=None,
            strength=0.9,
            cfg_scale=guidance_scale,
            n_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator,
            device=device,
            idle_device="cpu",
            models=models,
            tokenizer=tokenizer,
        )
    else:
        image = pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator,
        ).images[0]

    return image

css="""
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

md = """
# Text-to-Image: Stable Diffusion from Scratch
### By [Nazareno Amidolare](https://kepler296e.github.io/)
Using **Docker**, **FastAPI**, **PyTorch** and **Gradio**.
### References
- [Coding Stable Diffusion from scratch in PyTorch](https://www.youtube.com/watch?v=ZBKpAp_6TGI&ab_channel=UmarJamil)
- [Hugging Space Diffusers](https://github.com/huggingface/diffusers/)

Currently running on a **CPU** (≈20 minutes per image).
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(md)
        
        with gr.Row():
            
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            
            run_button = gr.Button("Run", scale=0)
        
        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):

            with gr.Row():

                model = gr.Dropdown(
                    label="Model",
                    choices=["from-scratch", "runwayml/stable-diffusion-v1-5"],
                    value="from-scratch",
                    interactive=True,
                )

            with gr.Row():

                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=42,
                )

                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
            
                negative_prompt = gr.Text(
                    label="Negative prompt",
                    max_lines=1,
                    placeholder="Enter a negative prompt",
                    visible=False,
                    value="",
                )
                        
            with gr.Row():
                
                width = gr.Slider(
                    label="Width",
                    minimum=MIN_IMAGE_SIZE,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )
                
                height = gr.Slider(
                    label="Height",
                    minimum=MIN_IMAGE_SIZE,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )
            
            with gr.Row():
                
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=1.0,
                    maximum=14.0,
                    step=0.1,
                    value=8.0,
                )
                
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=50,
                )

    run_button.click(
        fn = generate_image,
        inputs = [prompt, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, model, width, height],
        outputs = [result]
    )

app = gr.mount_gradio_app(app, demo, "/")

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)