Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,827 Bytes
0f43f8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
import { Configuration, OpenAIApi } from "openai"
import { ChromaClient, OpenAIEmbeddingFunction } from "chromadb"
import prompt from "prompt-sync"
import assert from "assert"
import * as dotenv from "dotenv"
dotenv.config()
// const client = new ChromaClient("http://localhost:8000")
// API Keys
const OPENAI_API_KEY = process.env.OPENAI_API_KEY || ""
assert(OPENAI_API_KEY, "OPENAI_API_KEY environment variable is missing from .env")
const OPENAI_API_MODEL = process.env.OPENAI_API_MODEL || "gpt-3.5-turbo"
// Table config
const TABLE_NAME = process.env.TABLE_NAME || ""
assert(TABLE_NAME, "TABLE_NAME environment variable is missing from .env")
// Run config
const BABY_NAME = process.env.BABY_NAME || "BabyAGI"
// Goal config
const p = prompt()
const OBJECTIVE = p("What is BabyAGI's objective? ")
const INITIAL_TASK = p("What is the initial task to complete the objective? ")
assert(OBJECTIVE, "No objective provided.")
assert (INITIAL_TASK, "No initial task provided.")
console.log('\x1b[95m\x1b[1m\n*****CONFIGURATION*****\n\x1b[0m\x1b[0m')
console.log(`Name: ${BABY_NAME}`)
console.log(`LLM: ${OPENAI_API_MODEL}`)
if (OPENAI_API_MODEL.toLowerCase().includes("gpt-4")){
console.log("\x1b[91m\x1b[1m\n*****USING GPT-4. POTENTIALLY EXPENSIVE. MONITOR YOUR COSTS*****\x1b[0m\x1b[0m")
}
console.log("\x1b[94m\x1b[1m" + "\n*****OBJECTIVE*****\n" + "\x1b[0m\x1b[0m")
console.log(`${OBJECTIVE}`)
console.log(`\x1b[93m\x1b[1m \nInitial task: \x1b[0m\x1b[0m ${INITIAL_TASK}`)
// Define OpenAI embedding function using Chroma
const embeddingFunction = new OpenAIEmbeddingFunction(OPENAI_API_KEY)
// Configure OpenAI
const configuration = new Configuration({
apiKey: OPENAI_API_KEY,
});
const openai = new OpenAIApi(configuration);
//Task List
var taskList = []
// Connect to chromadb and create/get collection
const chromaConnect = async ()=>{
const chroma = new ChromaClient("http://localhost:8000")
const metric = "cosine"
const collections = await chroma.listCollections()
const collectionNames = collections.map((c)=>c.name)
if(collectionNames.includes(TABLE_NAME)){
const collection = await chroma.getCollection(TABLE_NAME, embeddingFunction)
return collection
}
else{
const collection = await chroma.createCollection(
TABLE_NAME,
{
"hnsw:space": metric
},
embeddingFunction
)
return collection
}
}
const add_task = (task)=>{ taskList.push(task) }
const clear_tasks = ()=>{ taskList = [] }
const get_ada_embedding = async (text)=>{
text = text.replace("\n", " ")
const embedding = await embeddingFunction.generate(text)
return embedding
}
const openai_completion = async (prompt, temperature=0.5, maxTokens=100)=>{
if(OPENAI_API_MODEL.startsWith("gpt-")){
const messages = [{"role": "system", "content": prompt}]
const response = await openai.createChatCompletion({
model: OPENAI_API_MODEL,
messages: messages,
max_tokens: maxTokens,
temperature: temperature,
n: 1,
stop: null
})
return response.data.choices[0].message.content.trim()
}
else {
const response = await openai.createCompletion({
model: OPENAI_API_MODEL,
prompt: prompt,
max_tokens: maxTokens,
temperature: temperature,
top_p: 1,
frequency_penalty: 0,
presence_penalty: 0
})
return response.data.choices[0].text.trim()
}
}
const task_creation_agent = async (objective, result, task_description, taskList)=>{
const prompt = `
You are an task creation AI that uses the result of an execution agent to create new tasks with the following objective: ${objective},
The last completed task has the result: ${result}.
This result was based on this task description: ${task_description}.
These are incomplete tasks: ${taskList.map(task=>`${task.taskId}: ${task.taskName}`).join(', ')}.
Based on the result, create new tasks to be completed by the AI system that do not overlap with incomplete tasks.
Return the tasks as an array.`
const response = await openai_completion(prompt)
const newTasks = response.trim().includes("\n") ? response.trim().split("\n") : [response.trim()];
return newTasks.map(taskName => ({ taskName: taskName }));
}
const prioritization_agent = async (taskId)=>{
const taskNames = taskList.map((task)=>task.taskName)
const nextTaskId = taskId+1
const prompt = `
You are an task prioritization AI tasked with cleaning the formatting of and reprioritizing the following tasks: ${taskNames}.
Consider the ultimate objective of your team:${OBJECTIVE}. Do not remove any tasks. Return the result as a numbered list, like:
#. First task
#. Second task
Start the task list with number ${nextTaskId}.`
const response = await openai_completion(prompt)
const newTasks = response.trim().includes("\n") ? response.trim().split("\n") : [response.trim()];
clear_tasks()
newTasks.forEach((newTask)=>{
const newTaskParts = newTask.trim().split(/\.(?=\s)/)
if (newTaskParts.length == 2){
const newTaskId = newTaskParts[0].trim()
const newTaskName = newTaskParts[1].trim()
add_task({
taskId: newTaskId,
taskName: newTaskName
})
}
})
}
const execution_agent = async (objective, task, chromaCollection)=>{
const context = context_agent(objective, 5, chromaCollection)
const prompt = `
You are an AI who performs one task based on the following objective: ${objective}.\n
Take into account these previously completed tasks: ${context}.\n
Your task: ${task}\nResponse:`
const response = await openai_completion(prompt, undefined, 2000)
return response
}
const context_agent = async (query, topResultsNum, chromaCollection)=>{
const count = await chromaCollection.count()
if (count == 0){
return []
}
const results = await chromaCollection.query(
undefined,
Math.min(topResultsNum, count),
undefined,
query,
)
return results.metadatas[0].map(item=>item.task)
}
function sleep(ms) {
return new Promise(resolve => setTimeout(resolve, ms))
}
(async()=>{
const initialTask = {
taskId: 1,
taskName: INITIAL_TASK
}
add_task(initialTask)
const chromaCollection = await chromaConnect()
var taskIdCounter = 1
while (true){
if(taskList.length>0){
console.log("\x1b[95m\x1b[1m"+"\n*****TASK LIST*****\n"+"\x1b[0m\x1b[0m")
taskList.forEach(t => {
console.log(" • " + t.taskName)
})
// Step 1: Pull the first task
const task = taskList.shift()
console.log("\x1b[92m\x1b[1m"+"\n*****NEXT TASK*****\n"+"\x1b[0m\x1b[0m")
console.log(task.taskId + ": " + task.taskName)
// Send to execution function to complete the task based on the context
const result = await execution_agent(OBJECTIVE, task.taskName, chromaCollection)
const currTaskId = task.taskId
console.log("\x1b[93m\x1b[1m"+"\nTASK RESULT\n"+"\x1b[0m\x1b[0m")
console.log(result)
// Step 2: Enrich result and store in Chroma
const enrichedResult = { data : result} // this is where you should enrich the result if needed
const resultId = `result_${task.taskId}`
const vector = enrichedResult.data // extract the actual result from the dictionary
const collectionLength = (await chromaCollection.get([resultId])).ids?.length
if(collectionLength>0){
await chromaCollection.update(
resultId,
undefined,
{task: task.taskName, result: result},
vector
)
}
else{
await chromaCollection.add(
resultId,
undefined,
{task: task.taskName, result},
vector
)
}
// Step 3: Create new tasks and reprioritize task list
const newTasks = await task_creation_agent(OBJECTIVE, enrichedResult, task.taskName, taskList.map(task=>task.taskName))
newTasks.forEach((task)=>{
taskIdCounter += 1
task.taskId = taskIdCounter
add_task(task)
})
await prioritization_agent(currTaskId)
await sleep(3000)
}
}
})()
|