Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,680 Bytes
886d8e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 |
# Thank you Ty Fiero for making this!
import os
import platform
import subprocess
import sys
import time
import inquirer
import psutil
import wget
def local_setup(interpreter, provider=None, model=None):
def download_model(models_dir, models, interpreter):
# Get RAM and disk information
total_ram = psutil.virtual_memory().total / (
1024 * 1024 * 1024
) # Convert bytes to GB
free_disk_space = psutil.disk_usage("/").free / (
1024 * 1024 * 1024
) # Convert bytes to GB
# Display the users hardware specs
interpreter.display_message(
f"Your machine has `{total_ram:.2f}GB` of RAM, and `{free_disk_space:.2f}GB` of free storage space."
)
if total_ram < 10:
interpreter.display_message(
f"\nYour computer realistically can only run smaller models less than 4GB, Phi-2 might be the best model for your computer.\n"
)
elif 10 <= total_ram < 30:
interpreter.display_message(
f"\nYour computer could handle a mid-sized model (4-10GB), Mistral-7B might be the best model for your computer.\n"
)
else:
interpreter.display_message(
f"\nYour computer should have enough RAM to run any model below.\n"
)
interpreter.display_message(
f"In general, the larger the model, the better the performance, but choose a model that best fits your computer's hardware. \nOnly models you have the storage space to download are shown:\n"
)
try:
model_list = [
{
"name": "Llama-3-8B-Instruct",
"file_name": " Meta-Llama-3-8B-Instruct.Q5_K_M.llamafile",
"size": 5.76,
"url": "https://huggingface.co/jartine/Meta-Llama-3-8B-Instruct-llamafile/resolve/main/Meta-Llama-3-8B-Instruct.Q5_K_M.llamafile?download=true",
},
{
"name": "Phi-3-mini",
"file_name": "Phi-3-mini-4k-instruct.Q5_K_M.llamafile",
"size": 2.84,
"url": "https://huggingface.co/jartine/Phi-3-mini-4k-instruct-llamafile/resolve/main/Phi-3-mini-4k-instruct.Q5_K_M.llamafile?download=true",
},
{
"name": "TinyLlama-1.1B",
"file_name": "TinyLlama-1.1B-Chat-v1.0.Q5_K_M.llamafile",
"size": 0.76,
"url": "https://huggingface.co/jartine/TinyLlama-1.1B-Chat-v1.0-GGUF/resolve/main/TinyLlama-1.1B-Chat-v1.0.Q5_K_M.llamafile?download=true",
},
{
"name": "Rocket-3B",
"file_name": "rocket-3b.Q5_K_M.llamafile",
"size": 1.89,
"url": "https://huggingface.co/jartine/rocket-3B-llamafile/resolve/main/rocket-3b.Q5_K_M.llamafile?download=true",
},
{
"name": "Phi-2",
"file_name": "phi-2.Q5_K_M.llamafile",
"size": 1.96,
"url": "https://huggingface.co/jartine/phi-2-llamafile/resolve/main/phi-2.Q5_K_M.llamafile?download=true",
},
{
"name": "LLaVA 1.5",
"file_name": "llava-v1.5-7b-q4.llamafile",
"size": 3.97,
"url": "https://huggingface.co/jartine/llava-v1.5-7B-GGUF/resolve/main/llava-v1.5-7b-q4.llamafile?download=true",
},
{
"name": "Mistral-7B-Instruct",
"file_name": "mistral-7b-instruct-v0.2.Q5_K_M.llamafile",
"size": 5.15,
"url": "https://huggingface.co/jartine/Mistral-7B-Instruct-v0.2-llamafile/resolve/main/mistral-7b-instruct-v0.2.Q5_K_M.llamafile?download=true",
},
{
"name": "WizardCoder-Python-13B",
"file_name": "wizardcoder-python-13b.llamafile",
"size": 7.33,
"url": "https://huggingface.co/jartine/wizardcoder-13b-python/resolve/main/wizardcoder-python-13b.llamafile?download=true",
},
{
"name": "WizardCoder-Python-34B",
"file_name": "wizardcoder-python-34b-v1.0.Q5_K_M.llamafile",
"size": 22.23,
"url": "https://huggingface.co/jartine/WizardCoder-Python-34B-V1.0-llamafile/resolve/main/wizardcoder-python-34b-v1.0.Q5_K_M.llamafile?download=true",
},
{
"name": "Mixtral-8x7B-Instruct",
"file_name": "mixtral-8x7b-instruct-v0.1.Q5_K_M.llamafile",
"size": 30.03,
"url": "https://huggingface.co/jartine/Mixtral-8x7B-Instruct-v0.1-llamafile/resolve/main/mixtral-8x7b-instruct-v0.1.Q5_K_M.llamafile?download=true",
},
]
# Filter models based on available disk space and RAM
filtered_models = [
model
for model in model_list
if model["size"] <= free_disk_space and model["file_name"] not in models
]
if filtered_models:
time.sleep(1)
# Prompt the user to select a model
model_choices = [
f"{model['name']} ({model['size']:.2f}GB)"
for model in filtered_models
]
questions = [
inquirer.List(
"model",
message="Select a model to download:",
choices=model_choices,
)
]
answers = inquirer.prompt(questions)
if answers == None:
exit()
# Get the selected model
selected_model = next(
model
for model in filtered_models
if f"{model['name']} ({model['size']}GB)" == answers["model"]
)
# Download the selected model
model_url = selected_model["url"]
# Extract the basename and remove query parameters
filename = os.path.basename(model_url).split("?")[0]
model_path = os.path.join(models_dir, filename)
# time.sleep(0.3)
print(f"\nDownloading {selected_model['name']}...\n")
wget.download(model_url, model_path)
# Make the model executable if not on Windows
if platform.system() != "Windows":
subprocess.run(["chmod", "+x", model_path], check=True)
print(f"\nModel '{selected_model['name']}' downloaded successfully.\n")
interpreter.display_message(
"To view or delete downloaded local models, run `interpreter --local_models`\n\n"
)
return model_path
else:
print(
"\nYour computer does not have enough storage to download any local LLMs.\n"
)
return None
except Exception as e:
print(e)
print(
"\nAn error occurred while trying to download the model. Please try again or use a different local model provider.\n"
)
return None
# START OF LOCAL MODEL PROVIDER LOGIC
interpreter.display_message(
"\n**Open Interpreter** supports multiple local model providers.\n"
)
# Define the choices for local models
choices = [
"Ollama",
"Llamafile",
"LM Studio",
"Jan",
]
# Use inquirer to let the user select an option
questions = [
inquirer.List(
"model",
message="Select a provider",
choices=choices,
),
]
answers = inquirer.prompt(questions)
if answers == None:
exit()
selected_model = answers["model"]
if selected_model == "LM Studio":
interpreter.display_message(
"""
To use use Open Interpreter with **LM Studio**, you will need to run **LM Studio** in the background.
1. Download **LM Studio** from [https://lmstudio.ai/](https://lmstudio.ai/), then start it.
2. Select a language model then click **Download**.
3. Click the **<->** button on the left (below the chat button).
4. Select your model at the top, then click **Start Server**.
Once the server is running, you can begin your conversation below.
"""
)
interpreter.llm.supports_functions = False
interpreter.llm.api_base = "http://localhost:1234/v1"
interpreter.llm.api_key = "x"
elif selected_model == "Ollama":
try:
# List out all downloaded ollama models. Will fail if ollama isn't installed
result = subprocess.run(
["ollama", "list"], capture_output=True, text=True, check=True
)
lines = result.stdout.split("\n")
names = [
line.split()[0].replace(":latest", "")
for line in lines[1:]
if line.strip()
] # Extract names, trim out ":latest", skip header
if "llama3" in names:
names.remove("llama3")
names = ["llama3"] + names
if "codestral" in names:
names.remove("codestral")
names = ["codestral"] + names
for model in ["llama3", "phi3", "wizardlm2", "codestral"]:
if model not in names:
names.append("β Download " + model)
names.append("Browse Models β")
# Create a new inquirer selection from the names
name_question = [
inquirer.List(
"name",
message="Select a model",
choices=names,
),
]
name_answer = inquirer.prompt(name_question)
if name_answer == None:
exit()
selected_name = name_answer["name"]
if "β Download " in selected_name:
model = selected_name.split(" ")[-1]
interpreter.display_message(f"\nDownloading {model}...\n")
subprocess.run(["ollama", "pull", model], check=True)
elif "Browse Models β" in selected_name:
interpreter.display_message(
"Opening [ollama.com/library](ollama.com/library)."
)
import webbrowser
webbrowser.open("https://ollama.com/library")
exit()
else:
model = selected_name.strip()
# Set the model to the selected model
interpreter.llm.model = f"ollama/{model}"
# Send a ping, which will actually load the model
interpreter.display_message("Loading model...")
old_max_tokens = interpreter.llm.max_tokens
old_context_window = interpreter.llm.context_window
interpreter.llm.max_tokens = 1
interpreter.llm.context_window = 100
interpreter.computer.ai.chat("ping")
interpreter.llm.max_tokens = old_max_tokens
interpreter.llm.context_window = old_context_window
interpreter.display_message(f"> Model set to `{model}`")
# If Ollama is not installed or not recognized as a command, prompt the user to download Ollama and try again
except (subprocess.CalledProcessError, FileNotFoundError) as e:
print("Ollama is not installed or not recognized as a command.")
time.sleep(1)
interpreter.display_message(
f"\nPlease visit [https://ollama.com/](https://ollama.com/) to download Ollama and try again.\n"
)
time.sleep(2)
sys.exit(1)
elif selected_model == "Jan":
interpreter.display_message(
"""
To use use Open Interpreter with **Jan**, you will need to run **Jan** in the background.
1. Download **Jan** from [https://jan.ai/](https://jan.ai/), then start it.
2. Select a language model from the "Hub" tab, then click **Download**.
3. Copy the ID of the model and enter it below.
3. Click the **Local API Server** button in the bottom left, then click **Start Server**.
Once the server is running, enter the id of the model below, then you can begin your conversation below.
"""
)
interpreter.llm.api_base = "http://localhost:1337/v1"
time.sleep(1)
# Prompt the user to enter the name of the model running on Jan
model_name_question = [
inquirer.Text(
"jan_model_name",
message="Enter the id of the model you have running on Jan",
),
]
model_name_answer = inquirer.prompt(model_name_question)
if model_name_answer == None:
exit()
jan_model_name = model_name_answer["jan_model_name"]
interpreter.llm.model = jan_model_name
interpreter.display_message(f"\nUsing Jan model: `{jan_model_name}` \n")
time.sleep(1)
elif selected_model == "Llamafile":
if platform.system() == "Darwin": # Check if the system is MacOS
result = subprocess.run(
["xcode-select", "-p"], stdout=subprocess.PIPE, stderr=subprocess.STDOUT
)
if result.returncode != 0:
interpreter.display_message(
"To use Llamafile, Open Interpreter requires Mac users to have Xcode installed. You can install Xcode from https://developer.apple.com/xcode/ .\n\nAlternatively, you can use `LM Studio`, `Jan.ai`, or `Ollama` to manage local language models. Learn more at https://docs.openinterpreter.com/guides/running-locally ."
)
time.sleep(3)
raise Exception(
"Xcode is not installed. Please install Xcode and try again."
)
# Define the path to the models directory
models_dir = os.path.join(interpreter.get_oi_dir(), "models")
# Check and create the models directory if it doesn't exist
if not os.path.exists(models_dir):
os.makedirs(models_dir)
# Check if there are any models in the models folder
models = [f for f in os.listdir(models_dir) if f.endswith(".llamafile")]
if not models:
print(
"\nNo models currently downloaded. Please select a new model to download.\n"
)
model_path = download_model(models_dir, models, interpreter)
else:
# Prompt the user to select a downloaded model or download a new one
model_choices = models + ["β Download new model"]
questions = [
inquirer.List(
"model",
message="Select a model",
choices=model_choices,
)
]
answers = inquirer.prompt(questions)
if answers == None:
exit()
if answers["model"] == "β Download new model":
model_path = download_model(models_dir, models, interpreter)
else:
model_path = os.path.join(models_dir, answers["model"])
if model_path:
try:
# Run the selected model and hide its output
process = subprocess.Popen(
f'"{model_path}" ' + " ".join(["--nobrowser", "-ngl", "9999"]),
shell=True,
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT,
text=True,
)
for line in process.stdout:
if "llama server listening at http://127.0.0.1:8080" in line:
break # Exit the loop once the server is ready
except Exception as e:
process.kill() # Force kill if not terminated after timeout
print(e)
print("Model process terminated.")
# Set flags for Llamafile to work with interpreter
interpreter.llm.model = "openai/local"
interpreter.llm.temperature = 0
interpreter.llm.api_base = "http://localhost:8080/v1"
interpreter.llm.supports_functions = False
model_name = model_path.split("/")[-1]
interpreter.display_message(f"> Model set to `{model_name}`")
user_ram = total_ram = psutil.virtual_memory().total / (
1024 * 1024 * 1024
) # Convert bytes to GB
# Set context window and max tokens for all local models based on the users available RAM
if user_ram and user_ram > 9:
interpreter.llm.max_tokens = 1200
interpreter.llm.context_window = 8000
else:
interpreter.llm.max_tokens = 1000
interpreter.llm.context_window = 3000
# Display intro message
if interpreter.auto_run == False:
interpreter.display_message(
"**Open Interpreter** will require approval before running code."
+ "\n\nUse `interpreter -y` to bypass this."
+ "\n\nPress `CTRL-C` to exit.\n"
)
return interpreter
|