File size: 37,905 Bytes
14dc68f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73eedaf
 
 
14dc68f
71a8168
daeeecc
 
 
 
 
 
 
 
 
 
c89427c
633ca91
c89427c
 
daeeecc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71a8168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73eedaf
 
 
 
 
 
14dc68f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73eedaf
 
abfee45
3453165
 
 
 
c89427c
14dc68f
 
 
 
 
abfee45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14dc68f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73eedaf
 
 
 
 
14dc68f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73eedaf
 
 
 
14dc68f
 
 
 
 
 
73eedaf
 
14dc68f
 
 
 
 
abfee45
73eedaf
14dc68f
73eedaf
 
 
 
 
 
 
 
 
 
abfee45
73eedaf
 
 
ac3560f
abfee45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73eedaf
 
 
 
 
 
14dc68f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73eedaf
abfee45
73eedaf
 
 
 
 
 
abfee45
 
73eedaf
 
abfee45
73eedaf
 
 
 
 
 
 
 
 
 
abfee45
73eedaf
 
 
 
 
 
 
 
 
14dc68f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73eedaf
14dc68f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
633ca91
14dc68f
 
633ca91
 
 
 
 
14dc68f
 
 
73eedaf
14dc68f
 
633ca91
14dc68f
 
633ca91
 
 
14dc68f
 
 
 
633ca91
14dc68f
633ca91
 
 
 
14dc68f
 
 
 
633ca91
14dc68f
633ca91
 
 
 
 
14dc68f
 
 
 
 
 
 
 
abfee45
14dc68f
 
 
abfee45
14dc68f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcec4b2
 
 
 
14dc68f
 
 
 
 
 
 
71a8168
daeeecc
ceb0fa1
daeeecc
 
f459a92
44187c8
daeeecc
 
 
 
 
 
 
 
001960c
a922246
daeeecc
 
 
 
be85c6e
daeeecc
a99fa7f
a922246
daeeecc
 
 
 
be85c6e
daeeecc
 
a922246
be85c6e
daeeecc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e39cff
44187c8
 
 
daeeecc
 
 
c97efdd
daeeecc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71a8168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
#!/usr/bin/env python3
from dotenv import load_dotenv

# Load default environment variables (.env)
load_dotenv()

import os
import time
import logging
from collections import deque
from typing import Dict, List
import importlib
import openai
import chromadb
import tiktoken as tiktoken
from chromadb.utils.embedding_functions import OpenAIEmbeddingFunction
from chromadb.api.types import Documents, EmbeddingFunction, Embeddings
import re
from groq import Groq

# default opt out of chromadb telemetry.
from chromadb.config import Settings
from transformers import AutoTokenizer, AutoModel
import torch
import numpy

import psycopg2
import shutil
import gradio as gr
from mysite.libs.utilities import chat_with_interpreter, completion, process_file
from interpreter import interpreter
import mysite.interpreter.interpreter_config  # インポートするだけで設定が適用されます
import importlib
import os
import pkgutil
import async_timeout
import asyncio
import sys
from mysite.interpreter.google_chat import send_google_chat_card

args = sys.argv


DESCRIPTION = """
<div>
<h1 style="text-align: center;">develop site</h1>
<p>🦕 共同開発 AIシステム設定 LINE開発 CHATGPTS CHATGPTアシスタント設定 AI自動開発設定 APPSHEET GAS PYTHON</p>
</div>
<!-- Start of HubSpot Embed Code -->
  <script type="text/javascript" id="hs-script-loader" async defer src="//js-na1.hs-scripts.com/46277896.js"></script>
<!-- End of HubSpot Embed Code -->
"""

LICENSE = """
<p/>
<!-- Start of HubSpot Embed Code -->
  <script type="text/javascript" id="hs-script-loader" async defer src="//js-na1.hs-scripts.com/46277896.js"></script>
<!-- End of HubSpot Embed Code -->
---
Built with Meta Llama 3
"""

PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
   <img src="https://ysharma-dummy-chat-app.hf.space/file=/tmp/gradio/8e75e61cc9bab22b7ce3dec85ab0e6db1da5d107/Meta_lockup_positive%20primary_RGB.jpg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55;  ">
   <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Meta llama3</h1>
   <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me anything...</p>
</div>
"""


# チャットインターフェースの関数定義
# def chat_with_interpreter(message):
#    return "Response: " + message


# カスタムCSSの定義
css = """
.gradio-container {
    height: 100vh; /* 全体の高さを100vhに設定 */
    display: flex;
    flex-direction: column;
}
.gradio-tabs {
    flex: 1; /* タブ全体の高さを最大に設定 */
    display: flex;
    flex-direction: column;
}
.gradio-tab-item {
    flex: 1; /* 各タブの高さを最大に設定 */
    display: flex;
    flex-direction: column;
    overflow: hidden; /* オーバーフローを隠す */
}
.gradio-block {
    flex: 1; /* ブロックの高さを最大に設定 */
    display: flex;
    flex-direction: column;
}
.gradio-chatbot {
    height: 100vh; /* チャットボットの高さを100vhに設定 */
    overflow-y: auto; /* 縦スクロールを有効にする */
}
"""
GENERATION_TIMEOUT_SEC = 60
# Gradio block
chatbot2 = gr.Chatbot(height=450, placeholder=PLACEHOLDER, label="Gradio ChatInterface")



class ProductDatabase:
    def __init__(self, database_url):
        self.database_url = database_url
        self.conn = None
    
    def connect(self):
        self.conn = psycopg2.connect(self.database_url)
    
    def close(self):
        if self.conn:
            self.conn.close()
    
    def fetch_data(self):
        with self.conn.cursor() as cursor:
            cursor.execute("SELECT id FROM products")
            rows = cursor.fetchall()
            return rows
    
    def update_data(self, product_id, new_price):
        with self.conn.cursor() as cursor:
            cursor.execute("UPDATE products SET price = %s WHERE id = %s", (new_price, product_id))
            self.conn.commit()

# モデル名を指定
model_name = "sentence-transformers/all-MiniLM-L6-v2"

# トークナイザーとモデルをロード
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
client = chromadb.Client(Settings(anonymized_telemetry=False))

# Engine configuration

# Model: GPT, LLAMA, HUMAN, etc.
LLM_MODEL = os.getenv("LLM_MODEL", os.getenv("OPENAI_API_MODEL", "gpt-3.5-turbo")).lower()

# API Keys
OPENAI_API_KEY = os.getenv("api_key", "")
if not (LLM_MODEL.startswith("llama") or LLM_MODEL.startswith("human")):
    assert OPENAI_API_KEY, "\033[91m\033[1m" + "OPENAI_API_KEY environment variable is missing from .env" + "\033[0m\033[0m"

# Table config
RESULTS_STORE_NAME = os.getenv("RESULTS_STORE_NAME", os.getenv("TABLE_NAME", ""))
assert RESULTS_STORE_NAME, "\033[91m\033[1m" + "RESULTS_STORE_NAME environment variable is missing from .env" + "\033[0m\033[0m"

# Run configuration
INSTANCE_NAME = os.getenv("INSTANCE_NAME", os.getenv("BABY_NAME", "BabyAGI"))
COOPERATIVE_MODE = "none"
JOIN_EXISTING_OBJECTIVE = False

# Goal configuration
#OBJECTIVE = os.getenv("OBJECTIVE", "")
OBJECTIVE = "ボットの性能をよくする方法 日本語で説明"
OBJECTIVE = f"""チャットボットでの広告展開"""
args = sys.argv
if args[1]:
    print(args[1])
    OBJECTIVE = args[1]

INITIAL_TASK = os.getenv("INITIAL_TASK", os.getenv("FIRST_TASK", ""))

# Model configuration
OPENAI_TEMPERATURE = float(os.getenv("OPENAI_TEMPERATURE", 0.0))

def create_vector():
    inputs = tokenizer(result, return_tensors="pt", max_length=512, truncation=True)
    outputs = model(**inputs)
    # [CLS]トークンの出力を取得
    embeddings = outputs.last_hidden_state[:,0,:].squeeze().detach().cpu().numpy().tolist()   
    print(embeddings)
    import requests

    url = "https://kenken999-php.hf.space/api/v1.php"

    payload = f"""model_name={embeddings}&vector_text={result}&table=products&action=insert"""
    headers = {
    'X-Auth-Token': 'admin',
    'Content-Type': 'application/x-www-form-urlencoded',
    'Cookie': 'runnerSession=muvclb78zpsdjbm7y9c3; pD1lszvk6ratOZhmmgvkp=13767810ebf0782b0b51bf72dedb63b3'
    }

    response = requests.request("POST", url, headers=headers, data=payload)

    print(response.text)    
    return True

def insert_product():
    inputs = tokenizer(result, return_tensors="pt", max_length=512, truncation=True)
    outputs = model(**inputs)
    # [CLS]トークンの出力を取得
    embeddings = outputs.last_hidden_state[:,0,:].squeeze().detach().cpu().numpy().tolist()   
    print(embeddings)
    import requests

    url = "https://kenken999-php.hf.space/api/v1.php"

    payload = f"""model_name={embeddings}&vector_text={result}&table=products&action=insert"""
    headers = {
    'X-Auth-Token': 'admin',
    'Content-Type': 'application/x-www-form-urlencoded',
    'Cookie': 'runnerSession=muvclb78zpsdjbm7y9c3; pD1lszvk6ratOZhmmgvkp=13767810ebf0782b0b51bf72dedb63b3'
    }

    response = requests.request("POST", url, headers=headers, data=payload)

    print(response.text)    
    return True


# Extensions support begin

def can_import(module_name):
    try:
        importlib.import_module(module_name)
        return True
    except ImportError:
        return False


DOTENV_EXTENSIONS = os.getenv("DOTENV_EXTENSIONS", "").split(" ")

# Command line arguments extension
# Can override any of the above environment variables
ENABLE_COMMAND_LINE_ARGS = (
        os.getenv("ENABLE_COMMAND_LINE_ARGS", "false").lower() == "true"
)
if ENABLE_COMMAND_LINE_ARGS:
    if can_import("extensions.argparseext"):
        from extensions.argparseext import parse_arguments

        OBJECTIVE, INITIAL_TASK, LLM_MODEL, DOTENV_EXTENSIONS, INSTANCE_NAME, COOPERATIVE_MODE, JOIN_EXISTING_OBJECTIVE = parse_arguments()

# Human mode extension
# Gives human input to babyagi
if LLM_MODEL.startswith("human"):
    if can_import("extensions.human_mode"):
        from extensions.human_mode import user_input_await

# Load additional environment variables for enabled extensions
# TODO: This might override the following command line arguments as well:
#    OBJECTIVE, INITIAL_TASK, LLM_MODEL, INSTANCE_NAME, COOPERATIVE_MODE, JOIN_EXISTING_OBJECTIVE
if DOTENV_EXTENSIONS:
    if can_import("extensions.dotenvext"):
        from extensions.dotenvext import load_dotenv_extensions

        load_dotenv_extensions(DOTENV_EXTENSIONS)

# TODO: There's still work to be done here to enable people to get
# defaults from dotenv extensions, but also provide command line
# arguments to override them

# Extensions support end

print("\033[95m\033[1m" + "\n*****CONFIGURATION*****\n" + "\033[0m\033[0m")
print(f"Name  : {INSTANCE_NAME}")
print(f"Mode  : {'alone' if COOPERATIVE_MODE in ['n', 'none'] else 'local' if COOPERATIVE_MODE in ['l', 'local'] else 'distributed' if COOPERATIVE_MODE in ['d', 'distributed'] else 'undefined'}")
print(f"LLM   : {LLM_MODEL}")


# Check if we know what we are doing
assert OBJECTIVE, "\033[91m\033[1m" + "OBJECTIVE environment variable is missing from .env" + "\033[0m\033[0m"
assert INITIAL_TASK, "\033[91m\033[1m" + "INITIAL_TASK environment variable is missing from .env" + "\033[0m\033[0m"

LLAMA_MODEL_PATH = os.getenv("LLAMA_MODEL_PATH", "models/llama-13B/ggml-model.bin")
if LLM_MODEL.startswith("llama"):
    if can_import("llama_cpp"):
        from llama_cpp import Llama

        print(f"LLAMA : {LLAMA_MODEL_PATH}" + "\n")
        assert os.path.exists(LLAMA_MODEL_PATH), "\033[91m\033[1m" + f"Model can't be found." + "\033[0m\033[0m"

        CTX_MAX = 1024
        LLAMA_THREADS_NUM = int(os.getenv("LLAMA_THREADS_NUM", 8))

        print('Initialize model for evaluation')
        llm = Llama(
            model_path=LLAMA_MODEL_PATH,
            n_ctx=CTX_MAX,
            n_threads=LLAMA_THREADS_NUM,
            n_batch=512,
            use_mlock=False,
        )

        print('\nInitialize model for embedding')
        llm_embed = Llama(
            model_path=LLAMA_MODEL_PATH,
            n_ctx=CTX_MAX,
            n_threads=LLAMA_THREADS_NUM,
            n_batch=512,
            embedding=True,
            use_mlock=False,
        )

        print(
            "\033[91m\033[1m"
            + "\n*****USING LLAMA.CPP. POTENTIALLY SLOW.*****"
            + "\033[0m\033[0m"
        )
    else:
        print(
            "\033[91m\033[1m"
            + "\nLlama LLM requires package llama-cpp. Falling back to GPT-3.5-turbo."
            + "\033[0m\033[0m"
        )
        LLM_MODEL = "gpt-3.5-turbo"

if LLM_MODEL.startswith("gpt-4"):
    print(
        "\033[91m\033[1m"
        + "\n*****USING GPT-4. POTENTIALLY EXPENSIVE. MONITOR YOUR COSTS*****"
        + "\033[0m\033[0m"
    )

if LLM_MODEL.startswith("human"):
    print(
        "\033[91m\033[1m"
        + "\n*****USING HUMAN INPUT*****"
        + "\033[0m\033[0m"
    )

print("\033[94m\033[1m" + "\n*****OBJECTIVE*****\n" + "\033[0m\033[0m")
print(f"{OBJECTIVE}")

if not JOIN_EXISTING_OBJECTIVE:
    print("\033[93m\033[1m" + "\nInitial task:" + "\033[0m\033[0m" + f" {INITIAL_TASK}")
else:
    print("\033[93m\033[1m" + f"\nJoining to help the objective" + "\033[0m\033[0m")

# Configure OpenAI
openai.api_key = os.getenv("api_key")


# Llama embedding function
class LlamaEmbeddingFunction(EmbeddingFunction):
    def __init__(self):
        return


    def __call__(self, texts: Documents) -> Embeddings:
        embeddings = []
        for t in texts:
            #e = llm_embed.embed(t)
            inputs = tokenizer(t, return_tensors="pt")
            outputs = model(**inputs)
            # [CLS]トークンの出力を取得
            e = outputs.last_hidden_state[:,0,:].squeeze().detach().cpu().numpy().tolist()
            embeddings.append(e)
        return embeddings


# Results storage using local ChromaDB
class DefaultResultsStorage:
    def __init__(self):
        logging.getLogger('chromadb').setLevel(logging.ERROR)
        # Create Chroma collection
        chroma_persist_dir = "chroma"
        chroma_client = chromadb.PersistentClient(
            settings=chromadb.config.Settings(
                persist_directory=chroma_persist_dir,
            )
        )

        metric = "cosine"
        #if LLM_MODEL.startswith("llama"):
        embedding_function = LlamaEmbeddingFunction()
        #else:
        #    embedding_function = OpenAIEmbeddingFunction(api_key=OPENAI_API_KEY)
        self.collection = chroma_client.get_or_create_collection(
            name=RESULTS_STORE_NAME,
            metadata={"hnsw:space": metric},
            embedding_function=embedding_function,
        )



    def add(self, task: Dict, result: str, result_id: str):

        # Break the function if LLM_MODEL starts with "human" (case-insensitive)
        if LLM_MODEL.startswith("human"):
            return
        #return
        #from langchain_community.chat_models import ChatOpenAI    
        # Continue with the rest of the function
        #llm_embed = ChatOpenAI(model_name="lama3-70b-8192",
        #                            openai_api_key="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",
        #                            openai_api_base="https://api.groq.com/openai/v1",
        #                            )        
        #import openai
        #openai.api_key = "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"
        #openai.api_base = "https://api.groq.com/openai/v1"
        #response = openai.embeddings.create(input=result, 
        #                                    model="lama3-70b-8192",                                          
        #
        inputs = tokenizer(result, return_tensors="pt", max_length=512, truncation=True)
        outputs = model(**inputs)
        # [CLS]トークンの出力を取得
        embeddings = outputs.last_hidden_state[:,0,:].squeeze().detach().cpu().numpy().tolist()   
        #print(embeddings)
        import requests

        url = "https://kenken999-php.hf.space/api/v1.php"

        payload = f"""model_name={embeddings}&vector_text={result}&table=products&action=insert"""
        headers = {
        'X-Auth-Token': 'admin',
        'Content-Type': 'application/x-www-form-urlencoded',
        'Cookie': 'runnerSession=muvclb78zpsdjbm7y9c3; pD1lszvk6ratOZhmmgvkp=13767810ebf0782b0b51bf72dedb63b3'
        }

        response = requests.request("POST", url, headers=headers, data=payload)

        print(response.text)

        #cls_embedding = outputs.last_hidden_state[:, 0, :].squeeze()
        # テンソルが CPU 上にあることを確認し、NumPy 配列に変換
        #cls_embedding_np = cls_embedding.detach().cpu().numpy()        
                                        
        #embeddings = response['data'][0]['embedding']        
        #embeddings = llm_embed.embed(result) if LLM_MODEL.startswith("llama") else None
        if (
                len(self.collection.get(ids=[result_id], include=[])["ids"]) > 0
        ):  # Check if the result already exists
            self.collection.update(
                ids=result_id,
                embeddings=embeddings,
                documents=result,
                metadatas={"task": task["task_name"], "result": result},
            )
        else:
            self.collection.add(
                ids=result_id,
                embeddings=embeddings,
                documents=result,
                metadatas={"task": task["task_name"], "result": result},
            )

    def query(self, query: str, top_results_num: int) -> List[dict]:
        count: int = self.collection.count()
        if count == 0:
            return []
        results = self.collection.query(
            query_texts=query,
            n_results=min(top_results_num, count),
            include=["metadatas"]
        )
        return [item["task"] for item in results["metadatas"][0]]


# Initialize results storage
def try_weaviate():
    WEAVIATE_URL = os.getenv("WEAVIATE_URL", "")
    WEAVIATE_USE_EMBEDDED = os.getenv("WEAVIATE_USE_EMBEDDED", "False").lower() == "true"
    if (WEAVIATE_URL or WEAVIATE_USE_EMBEDDED) and can_import("extensions.weaviate_storage"):
        WEAVIATE_API_KEY = os.getenv("WEAVIATE_API_KEY", "")
        from extensions.weaviate_storage import WeaviateResultsStorage
        print("\nUsing results storage: " + "\033[93m\033[1m" + "Weaviate" + "\033[0m\033[0m")
        return WeaviateResultsStorage(OPENAI_API_KEY, WEAVIATE_URL, WEAVIATE_API_KEY, WEAVIATE_USE_EMBEDDED, LLM_MODEL, LLAMA_MODEL_PATH, RESULTS_STORE_NAME, OBJECTIVE)
    return None

def try_pinecone():
    PINECONE_API_KEY = os.getenv("PINECONE_API_KEY", "")
    if PINECONE_API_KEY and can_import("extensions.pinecone_storage"):
        PINECONE_ENVIRONMENT = os.getenv("PINECONE_ENVIRONMENT", "")
        assert (
            PINECONE_ENVIRONMENT
        ), "\033[91m\033[1m" + "PINECONE_ENVIRONMENT environment variable is missing from .env" + "\033[0m\033[0m"
        from extensions.pinecone_storage import PineconeResultsStorage
        print("\nUsing results storage: " + "\033[93m\033[1m" + "Pinecone" + "\033[0m\033[0m")
        return PineconeResultsStorage(OPENAI_API_KEY, PINECONE_API_KEY, PINECONE_ENVIRONMENT, LLM_MODEL, LLAMA_MODEL_PATH, RESULTS_STORE_NAME, OBJECTIVE)
    return None

def use_chroma():
    print("\nUsing results storage: " + "\033[93m\033[1m" + "Chroma (Default)" + "\033[0m\033[0m")
    return DefaultResultsStorage()

results_storage = try_weaviate() or try_pinecone() or use_chroma()

# Task storage supporting only a single instance of BabyAGI
class SingleTaskListStorage:
    def __init__(self):
        self.tasks = deque([])
        self.task_id_counter = 0

    def append(self, task: Dict):
        self.tasks.append(task)

    def replace(self, tasks: List[Dict]):
        self.tasks = deque(tasks)

    def popleft(self):
        return self.tasks.popleft()

    def is_empty(self):
        return False if self.tasks else True

    def next_task_id(self):
        self.task_id_counter += 1
        return self.task_id_counter

    def get_task_names(self):
        return [t["task_name"] for t in self.tasks]


# Initialize tasks storage
tasks_storage = SingleTaskListStorage()
if COOPERATIVE_MODE in ['l', 'local']:
    if can_import("extensions.ray_tasks"):
        import sys
        from pathlib import Path

        sys.path.append(str(Path(__file__).resolve().parent))
        from extensions.ray_tasks import CooperativeTaskListStorage

        tasks_storage = CooperativeTaskListStorage(OBJECTIVE)
        print("\nReplacing tasks storage: " + "\033[93m\033[1m" + "Ray" + "\033[0m\033[0m")
elif COOPERATIVE_MODE in ['d', 'distributed']:
    pass


def limit_tokens_from_string(string: str, model: str, limit: int) -> str:
    """Limits the string to a number of tokens (estimated)."""

    try:
        encoding = tiktoken.encoding_for_model(model)
    except:
        encoding = tiktoken.encoding_for_model('gpt2')  # Fallback for others.

    encoded = encoding.encode(string)

    return encoding.decode(encoded[:limit])


def openai_call(
    prompt: str,
    model: str = LLM_MODEL,
    temperature: float = OPENAI_TEMPERATURE,
    max_tokens: int = 100,
):
    while True:
        print("--------------------------------------------------------------------------------------")
        messages=[
            {
                "role": "user",
                "content": "prompt"
            }
        ],
        print(prompt)
        #return
        client = Groq(api_key=os.getenv("api_key"))
        res = ""
        print("--------------------------------------------------------------------------------------")
        print(prompt)
        completion = client.chat.completions.create(
                        model="llama3-8b-8192",
                        messages=[
                            {
                                "role": "user",
                                "content": prompt
                            }
                        ],
                        temperature=1,
                        max_tokens=4024,
                        top_p=1,
                        stream=True,
                        stop=None,
                    )
        for chunk in completion:
            #print(chunk.choices[0].delta.content)
            #print(chunk.choices[0].delta.content or "", end="")
            res += chunk.choices[0].delta.content or ""
        return res

    while True:


        try:
            if model.lower().startswith("llama"):
                result = llm(prompt[:CTX_MAX],
                             stop=["### Human"],
                             echo=False,
                             temperature=0.2,
                             top_k=40,
                             top_p=0.95,
                             repeat_penalty=1.05,
                             max_tokens=200)
                # print('\n*****RESULT JSON DUMP*****\n')
                # print(json.dumps(result))
                # print('\n')
                for chunk in completion:
                    print(chunk.choices[0].delta.content or "", end="")
                return result['choices'][0]['text'].strip()
            elif model.lower().startswith("human"):
                return user_input_await(prompt)
            elif not model.lower().startswith("gpt-"):
                # Use completion API
                response = openai.Completion.create(
                    engine=model,
                    prompt=prompt,
                    temperature=temperature,
                    max_tokens=max_tokens,
                    top_p=1,
                    frequency_penalty=0,
                    presence_penalty=0,
                )
                return response.choices[0].text.strip()
            else:
                # Use 4000 instead of the real limit (4097) to give a bit of wiggle room for the encoding of roles.
                # TODO: different limits for different models.

                trimmed_prompt = limit_tokens_from_string(prompt, model, 4000 - max_tokens)

                # Use chat completion API
                messages = [{"role": "system", "content": trimmed_prompt}]
                response = openai.ChatCompletion.create(
                    model=model,
                    messages=messages,
                    temperature=temperature,
                    max_tokens=max_tokens,
                    n=1,
                    stop=None,
                )
                return response.choices[0].message.content.strip()
        except openai.error.RateLimitError:
            print(
                "   *** The OpenAI API rate limit has been exceeded. Waiting 10 seconds and trying again. ***"
            )
            time.sleep(10)  # Wait 10 seconds and try again
        except openai.error.Timeout:
            print(
                "   *** OpenAI API timeout occurred. Waiting 10 seconds and trying again. ***"
            )
            time.sleep(10)  # Wait 10 seconds and try again
        except openai.error.APIError:
            print(
                "   *** OpenAI API error occurred. Waiting 10 seconds and trying again. ***"
            )
            time.sleep(10)  # Wait 10 seconds and try again
        except openai.error.APIConnectionError:
            print(
                "   *** OpenAI API connection error occurred. Check your network settings, proxy configuration, SSL certificates, or firewall rules. Waiting 10 seconds and trying again. ***"
            )
            time.sleep(10)  # Wait 10 seconds and try again
        except openai.error.InvalidRequestError:
            print(
                "   *** OpenAI API invalid request. Check the documentation for the specific API method you are calling and make sure you are sending valid and complete parameters. Waiting 10 seconds and trying again. ***"
            )
            time.sleep(10)  # Wait 10 seconds and try again
        except openai.error.ServiceUnavailableError:
            print(
                "   *** OpenAI API service unavailable. Waiting 10 seconds and trying again. ***"
            )
            time.sleep(10)  # Wait 10 seconds and try again
        else:
            break


def task_creation_agent(
        objective: str, result: Dict, task_description: str, task_list: List[str]
):
    prompt = f"""
You are to use the result from an execution agent to create new tasks with the following objective: {objective}.
The last completed task has the result: \n{result["data"]}
This result was based on this task description: {task_description}.\n"""

    if task_list:
        prompt += f"These are incomplete tasks: {', '.join(task_list)}\n"
    prompt += "Based on the result, return a list of tasks to be completed in order to meet the objective. "
    if task_list:
        prompt += "These new tasks must not overlap with incomplete tasks. "

    prompt += """
Return one task per line in your response. The result must be a numbered list in the format:

#. First task
#. Second task

The number of each entry must be followed by a period. If your list is empty, write "There are no tasks to add at this time."
Unless your list is empty, do not include any headers before your numbered list or follow your numbered list with any other output."""

    print(f'\n*****TASK CREATION AGENT PROMPT****\n{prompt}\n')
    response = openai_call(prompt, max_tokens=4000)
    print(f'\n****TASK CREATION AGENT RESPONSE****\n{response}\n')
    new_tasks = response.split('\n')
    new_tasks_list = []
    for task_string in new_tasks:
        task_parts = task_string.strip().split(".", 1)
        if len(task_parts) == 2:
            task_id = ''.join(s for s in task_parts[0] if s.isnumeric())
            task_name = re.sub(r'[^\w\s_]+', '', task_parts[1]).strip()
            if task_name.strip() and task_id.isnumeric():
                new_tasks_list.append(task_name)
            # print('New task created: ' + task_name)

    out = [{"task_name": task_name} for task_name in new_tasks_list]
    return out


def prioritization_agent():
    task_names = tasks_storage.get_task_names()
    bullet_string = '\n'

    prompt = f"""
You are tasked with prioritizing the following tasks: {bullet_string + bullet_string.join(task_names)}
Consider the ultimate objective of your team: {OBJECTIVE}.
Tasks should be sorted from highest to lowest priority, where higher-priority tasks are those that act as pre-requisites or are more essential for meeting the objective.
Do not remove any tasks. Return the ranked tasks as a numbered list in the format:

#. First task
#. Second task

The entries must be consecutively numbered, starting with 1. The number of each entry must be followed by a period.
Do not include any headers before your ranked list or follow your list with any other output."""

    print(f'\n****TASK PRIORITIZATION AGENT PROMPT****\n{prompt}\n')
    response = openai_call(prompt, max_tokens=2000)
    print(f'\n****TASK PRIORITIZATION AGENT RESPONSE****\n{response}\n')
    if not response:
        print('Received empty response from priotritization agent. Keeping task list unchanged.')
        return
    new_tasks = response.split("\n") if "\n" in response else [response]
    new_tasks_list = []
    for task_string in new_tasks:
        task_parts = task_string.strip().split(".", 1)
        if len(task_parts) == 2:
            task_id = ''.join(s for s in task_parts[0] if s.isnumeric())
            task_name = re.sub(r'[^\w\s_]+', '', task_parts[1]).strip()
            if task_name.strip():
                new_tasks_list.append({"task_id": task_id, "task_name": task_name})

    return new_tasks_list


# Execute a task based on the objective and five previous tasks
def execution_agent(objective: str, task: str) -> str:
    """
    Executes a task based on the given objective and previous context.

    Args:
        objective (str): The objective or goal for the AI to perform the task.
        task (str): The task to be executed by the AI.

    Returns:
        str: The response generated by the AI for the given task.

    """

    context = context_agent(query=objective, top_results_num=5)
    # print("\n****RELEVANT CONTEXT****\n")
    # print(context)
    # print('')
    prompt = f'Perform one task based on the following objective: {objective}.\n'
    if context:
        prompt += 'Take into account these previously completed tasks:' + '\n'.join(context)
    prompt += f'\nYour task: {task}\nResponse:'
    return openai_call(prompt, max_tokens=2000)


# Get the top n completed tasks for the objective
def context_agent(query: str, top_results_num: int):
    """
    Retrieves context for a given query from an index of tasks.

    Args:
        query (str): The query or objective for retrieving context.
        top_results_num (int): The number of top results to retrieve.

    Returns:
        list: A list of tasks as context for the given query, sorted by relevance.

    """
    results = results_storage.query(query=query, top_results_num=top_results_num)
    # print("****RESULTS****")
    # print(results)
    return results


# Add the initial task if starting new objective
if not JOIN_EXISTING_OBJECTIVE:
    initial_task = {
        "task_id": tasks_storage.next_task_id(),
        "task_name": INITIAL_TASK
    }
    tasks_storage.append(initial_task)

import os
def main():
    loop = True
    webhook_url = os.getenv("chat_url")
    #OBJECTIVE = message
    loop = True
    result_all = ""
    count = 0
    while loop:
        # As long as there are tasks in the storage...
        if not tasks_storage.is_empty():
        #OBJECTIVE = "ボットの性能をよくする方法 日本語で説明"
            # Print the task list
            print("\033[95m\033[1m" + "\n*****TASK LIST*****\n" + "\033[0m\033[0m")
            print("\033[95m\033[1m" + "\n*****TASK LIST*****\n" + "\033[0m\033[0m")
            for t in tasks_storage.get_task_names():
                print(" • " + str(t))
                #yield str(t)
                result_all += str(t)+"\r\n"
            send_google_chat_card(webhook_url,OBJECTIVE,result_all,"tesst","test")

            # Step 1: Pull the first incomplete task
            task = tasks_storage.popleft()
            print("\033[92m\033[1m" + "\n*****NEXT TASK*****\n" + "\033[0m\033[0m")
            #yield "\033[92m\033[1m" + "\n*****NEXT TASK*****\n" + "\033[0m\033[0m"
            print(str(task["task_name"]))
            #yield str(task["task_name"])
            result_all += str(task["task_name"])+"\r\n"
            send_google_chat_card(webhook_url,OBJECTIVE,result_all,"tesst","test")


            # Send to execution function to complete the task based on the context
            result = execution_agent(OBJECTIVE, str(task["task_name"]))
            print("\033[93m\033[1m" + "\n*****TASK RESULT*****\n" + "\033[0m\033[0m")
            #yield "\033[93m\033[1m" + "\n*****TASK RESULT*****\n" + "\033[0m\033[0m"
            print(result)
            #yield result
            result_all += result+"\r\n"
            send_google_chat_card(webhook_url,OBJECTIVE,result_all,"tesst","test")

            #yield result_all

            # Step 2: Enrich result and store in the results storage
            # This is where you should enrich the result if needed
            enriched_result = {
                "data": result
            }
            # extract the actual result from the dictionary
            # since we don't do enrichment currently
            vector = enriched_result["data"]

            result_id = f"result_{task['task_id']}"

            results_storage.add(task, result, result_id)

            # Step 3: Create new tasks and re-prioritize task list
            # only the main instance in cooperative mode does that
            new_tasks = task_creation_agent(
                OBJECTIVE,
                enriched_result,
                task["task_name"],
                tasks_storage.get_task_names(),
            )

            print('Adding new tasks to task_storage')
            for new_task in new_tasks:
                new_task.update({"task_id": tasks_storage.next_task_id()})
                print(str(new_task))
                tasks_storage.append(new_task)

            if not JOIN_EXISTING_OBJECTIVE:
                prioritized_tasks = prioritization_agent()
                if prioritized_tasks:
                    tasks_storage.replace(prioritized_tasks)

            # Sleep a bit before checking the task list again
            time.sleep(3)
            count += 1
            if count > 5:
                loop = False
        else:
            print('Done.')
            loop = False


if __name__ == "__main__":
    main()


def completion(message: str, history=None, c=None, d=None, prompt="あなたは日本語の優秀なアシスタントです。"):
    OBJECTIVE = message
    loop = True
    result_all = ""
    count = 0
    while loop:
        # As long as there are tasks in the storage...
        if not tasks_storage.is_empty():
        #OBJECTIVE = "ボットの性能をよくする方法 日本語で説明"
            # Print the task list
            print("\033[95m\033[1m" + "\n*****TASK LIST*****\n" + "\033[0m\033[0m")
            for t in tasks_storage.get_task_names():
                print(" • " + str(t))
                yield str(t)
                result_all += str(t)+"\r\n"

            # Step 1: Pull the first incomplete task
            task = tasks_storage.popleft()
            print("\033[92m\033[1m" + "\n*****NEXT TASK*****\n" + "\033[0m\033[0m")
            yield "\033[92m\033[1m" + "\n*****NEXT TASK*****\n" + "\033[0m\033[0m"
            print(str(task["task_name"]))
            yield str(task["task_name"])
            result_all += str(task["task_name"])+"\r\n"

            # Send to execution function to complete the task based on the context
            result = execution_agent(OBJECTIVE, str(task["task_name"]))
            print("\033[93m\033[1m" + "\n*****TASK RESULT*****\n" + "\033[0m\033[0m")
            yield "\033[93m\033[1m" + "\n*****TASK RESULT*****\n" + "\033[0m\033[0m"
            print(result)
            yield result
            result_all += result+"\r\n"
            yield result_all

            # Step 2: Enrich result and store in the results storage
            # This is where you should enrich the result if needed
            enriched_result = {
                "data": result
            }
            # extract the actual result from the dictionary
            # since we don't do enrichment currently
            vector = enriched_result["data"]

            result_id = f"result_{task['task_id']}"

            results_storage.add(task, result, result_id)

            # Step 3: Create new tasks and re-prioritize task list
            # only the main instance in cooperative mode does that
            new_tasks = task_creation_agent(
                OBJECTIVE,
                enriched_result,
                task["task_name"],
                tasks_storage.get_task_names(),
            )

            print('Adding new tasks to task_storage')
            for new_task in new_tasks:
                new_task.update({"task_id": tasks_storage.next_task_id()})
                print(str(new_task))
                tasks_storage.append(new_task)

            if not JOIN_EXISTING_OBJECTIVE:
                prioritized_tasks = prioritization_agent()
                if prioritized_tasks:
                    tasks_storage.replace(prioritized_tasks)

            # Sleep a bit before checking the task list again
            time.sleep(1)
            count += 1
            if count > 6:
                loop = False
        else:
            print('Done.')
            loop = False
    return result_all



with gr.Blocks(fill_height=True, css=css) as gradio_babyagi:
    # gr.Markdown(DESCRIPTION)
    # gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
    gr.ChatInterface(
        fn=completion,
        chatbot=chatbot2,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(
            label="⚙️ Parameters", open=False, render=False
        ),
        additional_inputs=[
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.95,
                label="Temperature",
                render=False,
            ),
            gr.Slider(
                minimum=128,
                maximum=4096,
                step=1,
                value=512,
                label="Max new tokens",
                render=False,
            ),
        ],
        examples=[
            ["HTMLのサンプルを作成して"],
            [
                "CUDA_VISIBLE_DEVICES=0 llamafactory-cli train examples/lora_single_gpu/llama3_lora_sft.yaml"
            ],
        ],
        cache_examples=False,
    )

    gr.Markdown(LICENSE)
   

def test_postgres():
    # データベース接続情報
    DATABASE_URL = "postgresql://miyataken999:yz1wPf4KrWTm@ep-odd-mode-93794521.us-east-2.aws.neon.tech/neondb?sslmode=require"
    
    # ProductDatabaseクラスのインスタンスを作成
    db = ProductDatabase(DATABASE_URL)
    
    # データベースに接続
    db.connect()
    
    try:
        # データを取得
        products = db.fetch_data()
        print("Fetched products:")
        for product in products:
            print(product)
        
        # データを更新(例: 価格を更新)
        for product in products:
            product_id = product[0]
            print(product_id)
            #new_price = product[2] * 1.1  # 価格を10%増加させる
            #db.update_data(product_id, new_price)
            #print(f"Updated product ID {product_id} with new price {new_price}")
    
    finally:
        # 接続を閉じる
        db.close()