File size: 4,620 Bytes
ef635c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15c92e9
 
 
 
 
 
 
 
 
 
a72a723
15c92e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4d9db9
 
 
 
 
 
 
 
 
 
15c92e9
 
 
 
 
 
ef635c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import json
import os

import pandas as pd

from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumn, EvalQueueColumn
from src.leaderboard.read_evals import get_raw_eval_results


def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
    """Creates a dataframe from all the individual experiment results"""
    raw_data = get_raw_eval_results(results_path, requests_path)
    all_data_json = [v.to_dict() for v in raw_data]

    df = pd.DataFrame.from_records(all_data_json)

    # ------------------------------------------------------------------
    # Fallback: if no evaluation results are found we populate the
    # leaderboard with a single example model. This guarantees that a
    # freshly deployed Space shows a non-empty leaderboard and it serves
    # as a template for the expected columns/values.
    # ------------------------------------------------------------------
    if df.empty:
        example_row = {}

        # Populate benchmark metrics with the default value 0.5 using internal column names
        for metric in benchmark_cols:
            example_row[metric] = 0.5

        # Minimal metadata so that the row displays nicely
        example_row[AutoEvalColumn.model.name] = make_clickable_model("example/model")
        example_row[AutoEvalColumn.average.name] = 0.5
        example_row[AutoEvalColumn.model_type_symbol.name] = "🟢"
        example_row[AutoEvalColumn.model_type.name] = "pretrained"
        example_row[AutoEvalColumn.precision.name] = "float16"
        example_row[AutoEvalColumn.weight_type.name] = "Original"
        example_row[AutoEvalColumn.still_on_hub.name] = True
        example_row[AutoEvalColumn.architecture.name] = "Transformer"
        example_row[AutoEvalColumn.revision.name] = "main"
        example_row[AutoEvalColumn.license.name] = "apache-2.0"

        # Any missing columns will be created later in the function
        df = pd.DataFrame([example_row])

    # Sort primarily by LLM exact-match Pass@1 metric; if not present, fall back to average
    preferred_cols = []
    if hasattr(AutoEvalColumn, "pass_at_1"):
        preferred_cols.append(AutoEvalColumn.pass_at_1.name)
    preferred_cols.append(AutoEvalColumn.average.name)

    for col in preferred_cols:
        if col in df.columns:
            df = df.sort_values(by=[col], ascending=False)
            break

    # Ensure all expected columns exist, add missing ones with NaN so selection does not fail
    for expected in cols:
        if expected not in df.columns:
            df[expected] = pd.NA

    df = df[cols].round(decimals=2)

    # filter out if any of the benchmarks have not been produced
    df = df[has_no_nan_values(df, benchmark_cols)]
    return df


def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
    """Creates the different dataframes for the evaluation queues requestes"""
    entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
    all_evals = []

    for entry in entries:
        if ".json" in entry:
            file_path = os.path.join(save_path, entry)
            with open(file_path) as fp:
                data = json.load(fp)

            data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
            data[EvalQueueColumn.revision.name] = data.get("revision", "main")

            all_evals.append(data)
        elif ".md" not in entry:
            # this is a folder
            sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")]
            for sub_entry in sub_entries:
                file_path = os.path.join(save_path, entry, sub_entry)
                with open(file_path) as fp:
                    data = json.load(fp)

                data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
                data[EvalQueueColumn.revision.name] = data.get("revision", "main")
                all_evals.append(data)

    pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
    running_list = [e for e in all_evals if e["status"] == "RUNNING"]
    finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
    df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
    df_running = pd.DataFrame.from_records(running_list, columns=cols)
    df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
    return df_finished[cols], df_running[cols], df_pending[cols]