File size: 20,518 Bytes
60ea83f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
622b6ed
60ea83f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
"""
按中英混合识别
按日英混合识别
多语种启动切分识别语种
全部按中文识别
全部按英文识别
全部按日文识别
"""

import json
import logging
import os
import random
import re
import sys

import torch

now_dir = os.getcwd()
sys.path.append(now_dir)
sys.path.append("%s/GPT_SoVITS" % (now_dir))

logging.getLogger("markdown_it").setLevel(logging.ERROR)
logging.getLogger("urllib3").setLevel(logging.ERROR)
logging.getLogger("httpcore").setLevel(logging.ERROR)
logging.getLogger("httpx").setLevel(logging.ERROR)
logging.getLogger("asyncio").setLevel(logging.ERROR)
logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)


infer_ttswebui = os.environ.get("infer_ttswebui", 9872)
infer_ttswebui = int(infer_ttswebui)
is_share = os.environ.get("is_share", "False")
is_share = eval(is_share)
if "_CUDA_VISIBLE_DEVICES" in os.environ:
    os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]

is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
gpt_path = os.environ.get("gpt_path", None)
sovits_path = os.environ.get("sovits_path", None)
cnhubert_base_path = os.environ.get("cnhubert_base_path", None)
bert_path = os.environ.get("bert_path", None)
version = model_version = os.environ.get("version", "v2")

import gradio as gr
from TTS_infer_pack.text_segmentation_method import get_method
from TTS_infer_pack.TTS import NO_PROMPT_ERROR, TTS, TTS_Config

from tools.assets import css, js, top_html
from tools.i18n.i18n import I18nAuto, scan_language_list

language = os.environ.get("language", "Auto")
language = sys.argv[-1] if sys.argv[-1] in scan_language_list() else language
i18n = I18nAuto(language=language)


# os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1'  # 确保直接启动推理UI时也能够设置。

if torch.cuda.is_available():
    device = "cuda"
# elif torch.backends.mps.is_available():
#     device = "mps"
else:
    device = "cpu"

# is_half = False
# device = "cpu"

dict_language_v1 = {
    i18n("中文"): "all_zh",  # 全部按中文识别
    i18n("英文"): "en",  # 全部按英文识别#######不变
    i18n("日文"): "all_ja",  # 全部按日文识别
    i18n("中英混合"): "zh",  # 按中英混合识别####不变
    i18n("日英混合"): "ja",  # 按日英混合识别####不变
    i18n("多语种混合"): "auto",  # 多语种启动切分识别语种
}
dict_language_v2 = {
    i18n("中文"): "all_zh",  # 全部按中文识别
    i18n("英文"): "en",  # 全部按英文识别#######不变
    i18n("日文"): "all_ja",  # 全部按日文识别
    i18n("粤语"): "all_yue",  # 全部按中文识别
    i18n("韩文"): "all_ko",  # 全部按韩文识别
    i18n("中英混合"): "zh",  # 按中英混合识别####不变
    i18n("日英混合"): "ja",  # 按日英混合识别####不变
    i18n("粤英混合"): "yue",  # 按粤英混合识别####不变
    i18n("韩英混合"): "ko",  # 按韩英混合识别####不变
    i18n("多语种混合"): "auto",  # 多语种启动切分识别语种
    i18n("多语种混合(粤语)"): "auto_yue",  # 多语种启动切分识别语种
}
dict_language = dict_language_v1 if version == "v1" else dict_language_v2

cut_method = {
    i18n("不切"): "cut0",
    i18n("凑四句一切"): "cut1",
    i18n("凑50字一切"): "cut2",
    i18n("按中文句号。切"): "cut3",
    i18n("按英文句号.切"): "cut4",
    i18n("按标点符号切"): "cut5",
}

from config import change_choices, get_weights_names, name2gpt_path, name2sovits_path

SoVITS_names, GPT_names = get_weights_names()
from config import pretrained_sovits_name

path_sovits_v3 = pretrained_sovits_name["v3"]
path_sovits_v4 = pretrained_sovits_name["v4"]
is_exist_s2gv3 = os.path.exists(path_sovits_v3)
is_exist_s2gv4 = os.path.exists(path_sovits_v4)

tts_config = TTS_Config("configs/tts_infer.yaml")
tts_config.device = device
tts_config.is_half = is_half
tts_config.version = version
if gpt_path is not None:
    if "!" in gpt_path or "!" in gpt_path:
        gpt_path = name2gpt_path[gpt_path]
    tts_config.t2s_weights_path = gpt_path
if sovits_path is not None:
    if "!" in sovits_path or "!" in sovits_path:
        sovits_path = name2sovits_path[sovits_path]
    tts_config.vits_weights_path = sovits_path
if cnhubert_base_path is not None:
    tts_config.cnhuhbert_base_path = cnhubert_base_path
if bert_path is not None:
    tts_config.bert_base_path = bert_path

print(tts_config)
tts_pipeline = TTS(tts_config)
gpt_path = tts_config.t2s_weights_path
sovits_path = tts_config.vits_weights_path
version = tts_config.version


def inference(
    text,
    text_lang,
    ref_audio_path,
    aux_ref_audio_paths,
    prompt_text,
    prompt_lang,
    top_k,
    top_p,
    temperature,
    text_split_method,
    batch_size,
    speed_factor,
    ref_text_free,
    split_bucket,
    fragment_interval,
    seed,
    keep_random,
    parallel_infer,
    repetition_penalty,
    sample_steps,
    super_sampling,
):
    seed = -1 if keep_random else seed
    actual_seed = seed if seed not in [-1, "", None] else random.randint(0, 2**32 - 1)
    inputs = {
        "text": text,
        "text_lang": dict_language[text_lang],
        "ref_audio_path": ref_audio_path,
        "aux_ref_audio_paths": [item.name for item in aux_ref_audio_paths] if aux_ref_audio_paths is not None else [],
        "prompt_text": prompt_text if not ref_text_free else "",
        "prompt_lang": dict_language[prompt_lang],
        "top_k": top_k,
        "top_p": top_p,
        "temperature": temperature,
        "text_split_method": cut_method[text_split_method],
        "batch_size": int(batch_size),
        "speed_factor": float(speed_factor),
        "split_bucket": split_bucket,
        "return_fragment": False,
        "fragment_interval": fragment_interval,
        "seed": actual_seed,
        "parallel_infer": parallel_infer,
        "repetition_penalty": repetition_penalty,
        "sample_steps": int(sample_steps),
        "super_sampling": super_sampling,
    }
    try:
        for item in tts_pipeline.run(inputs):
            yield item, actual_seed
    except NO_PROMPT_ERROR:
        gr.Warning(i18n("V3不支持无参考文本模式,请填写参考文本!"))


def custom_sort_key(s):
    # 使用正则表达式提取字符串中的数字部分和非数字部分
    parts = re.split("(\d+)", s)
    # 将数字部分转换为整数,非数字部分保持不变
    parts = [int(part) if part.isdigit() else part for part in parts]
    return parts


if os.path.exists("./weight.json"):
    pass
else:
    with open("./weight.json", "w", encoding="utf-8") as file:
        json.dump({"GPT": {}, "SoVITS": {}}, file)

with open("./weight.json", "r", encoding="utf-8") as file:
    weight_data = file.read()
    weight_data = json.loads(weight_data)
    gpt_path = os.environ.get("gpt_path", weight_data.get("GPT", {}).get(version, GPT_names[-1]))
    sovits_path = os.environ.get("sovits_path", weight_data.get("SoVITS", {}).get(version, SoVITS_names[0]))
    if isinstance(gpt_path, list):
        gpt_path = gpt_path[0]
    if isinstance(sovits_path, list):
        sovits_path = sovits_path[0]

from process_ckpt import get_sovits_version_from_path_fast

v3v4set = {"v3", "v4"}


def change_sovits_weights(sovits_path, prompt_language=None, text_language=None):
    if "!" in sovits_path or "!" in sovits_path:
        sovits_path = name2sovits_path[sovits_path]
    global version, model_version, dict_language, if_lora_v3
    version, model_version, if_lora_v3 = get_sovits_version_from_path_fast(sovits_path)
    # print(sovits_path,version, model_version, if_lora_v3)
    is_exist = is_exist_s2gv3 if model_version == "v3" else is_exist_s2gv4
    path_sovits = path_sovits_v3 if model_version == "v3" else path_sovits_v4
    if if_lora_v3 == True and is_exist == False:
        info = path_sovits + "SoVITS %s" % model_version + i18n("底模缺失,无法加载相应 LoRA 权重")
        gr.Warning(info)
        raise FileExistsError(info)
    dict_language = dict_language_v1 if version == "v1" else dict_language_v2
    if prompt_language is not None and text_language is not None:
        if prompt_language in list(dict_language.keys()):
            prompt_text_update, prompt_language_update = (
                {"__type__": "update"},
                {"__type__": "update", "value": prompt_language},
            )
        else:
            prompt_text_update = {"__type__": "update", "value": ""}
            prompt_language_update = {"__type__": "update", "value": i18n("中文")}
        if text_language in list(dict_language.keys()):
            text_update, text_language_update = {"__type__": "update"}, {"__type__": "update", "value": text_language}
        else:
            text_update = {"__type__": "update", "value": ""}
            text_language_update = {"__type__": "update", "value": i18n("中文")}
        if model_version in v3v4set:
            visible_sample_steps = True
            visible_inp_refs = False
        else:
            visible_sample_steps = False
            visible_inp_refs = True
        yield (
            {"__type__": "update", "choices": list(dict_language.keys())},
            {"__type__": "update", "choices": list(dict_language.keys())},
            prompt_text_update,
            prompt_language_update,
            text_update,
            text_language_update,
            {"__type__": "update", "interactive": visible_sample_steps, "value": 32},
            {"__type__": "update", "visible": visible_inp_refs},
            {"__type__": "update", "interactive": True if model_version not in v3v4set else False},
            {"__type__": "update", "value": i18n("模型加载中,请等待"), "interactive": False},
        )

    tts_pipeline.init_vits_weights(sovits_path)
    yield (
        {"__type__": "update", "choices": list(dict_language.keys())},
        {"__type__": "update", "choices": list(dict_language.keys())},
        prompt_text_update,
        prompt_language_update,
        text_update,
        text_language_update,
        {"__type__": "update", "interactive": visible_sample_steps, "value": 32},
        {"__type__": "update", "visible": visible_inp_refs},
        {"__type__": "update", "interactive": True if model_version not in v3v4set else False},
        {"__type__": "update", "value": i18n("合成语音"), "interactive": True},
    )
    with open("./weight.json") as f:
        data = f.read()
        data = json.loads(data)
        data["SoVITS"][version] = sovits_path
    with open("./weight.json", "w") as f:
        f.write(json.dumps(data))


def change_gpt_weights(gpt_path):
    if "!" in gpt_path or "!" in gpt_path:
        gpt_path = name2gpt_path[gpt_path]
    tts_pipeline.init_t2s_weights(gpt_path)


with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False, js=js, css=css) as app:
    gr.HTML(
        top_html.format(
            i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.")
            + i18n("如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.")
        ),
        elem_classes="markdown",
    )

    with gr.Column():
        # with gr.Group():
        gr.Markdown(value=i18n("模型切换"))
        with gr.Row():
            GPT_dropdown = gr.Dropdown(
                label=i18n("GPT模型列表"),
                choices=sorted(GPT_names, key=custom_sort_key),
                value=gpt_path,
                interactive=True,
            )
            SoVITS_dropdown = gr.Dropdown(
                label=i18n("SoVITS模型列表"),
                choices=sorted(SoVITS_names, key=custom_sort_key),
                value=sovits_path,
                interactive=True,
            )
            refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary")
            refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown])

    with gr.Row():
        with gr.Column():
            gr.Markdown(value=i18n("*请上传并填写参考信息"))
            with gr.Row():
                inp_ref = gr.Audio(label=i18n("主参考音频(请上传3~10秒内参考音频,超过会报错!)"), type="filepath")
                inp_refs = gr.File(
                    label=i18n("辅参考音频(可选多个,或不选)"),
                    file_count="multiple",
                    visible=True if model_version != "v3" else False,
                )
            prompt_text = gr.Textbox(label=i18n("主参考音频的文本"), value="", lines=2)
            with gr.Row():
                prompt_language = gr.Dropdown(
                    label=i18n("主参考音频的语种"), choices=list(dict_language.keys()), value=i18n("中文")
                )
                with gr.Column():
                    ref_text_free = gr.Checkbox(
                        label=i18n("开启无参考文本模式。不填参考文本亦相当于开启。"),
                        value=False,
                        interactive=True if model_version != "v3" else False,
                        show_label=True,
                    )
                    gr.Markdown(
                        i18n("使用无参考文本模式时建议使用微调的GPT")
                        + "<br>"
                        + i18n("听不清参考音频说的啥(不晓得写啥)可以开。开启后无视填写的参考文本。")
                    )

        with gr.Column():
            gr.Markdown(value=i18n("*请填写需要合成的目标文本和语种模式"))
            text = gr.Textbox(label=i18n("需要合成的文本"), value="", lines=20, max_lines=20)
            text_language = gr.Dropdown(
                label=i18n("需要合成的文本的语种"), choices=list(dict_language.keys()), value=i18n("中文")
            )

    with gr.Group():
        gr.Markdown(value=i18n("推理设置"))
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    batch_size = gr.Slider(
                        minimum=1, maximum=200, step=1, label=i18n("batch_size"), value=20, interactive=True
                    )
                    sample_steps = gr.Radio(
                        label=i18n("采样步数(仅对V3/4生效)"), value=32, choices=[4, 8, 16, 32, 64, 128], visible=True
                    )
                with gr.Row():
                    fragment_interval = gr.Slider(
                        minimum=0.01, maximum=1, step=0.01, label=i18n("分段间隔(秒)"), value=0.3, interactive=True
                    )
                    speed_factor = gr.Slider(
                        minimum=0.6, maximum=1.65, step=0.05, label="语速", value=1.0, interactive=True
                    )
                with gr.Row():
                    top_k = gr.Slider(minimum=1, maximum=100, step=1, label=i18n("top_k"), value=5, interactive=True)
                    top_p = gr.Slider(minimum=0, maximum=1, step=0.05, label=i18n("top_p"), value=1, interactive=True)
                with gr.Row():
                    temperature = gr.Slider(
                        minimum=0, maximum=1, step=0.05, label=i18n("temperature"), value=1, interactive=True
                    )
                    repetition_penalty = gr.Slider(
                        minimum=0, maximum=2, step=0.05, label=i18n("重复惩罚"), value=1.35, interactive=True
                    )

            with gr.Column():
                with gr.Row():
                    how_to_cut = gr.Dropdown(
                        label=i18n("怎么切"),
                        choices=[
                            i18n("不切"),
                            i18n("凑四句一切"),
                            i18n("凑50字一切"),
                            i18n("按中文句号。切"),
                            i18n("按英文句号.切"),
                            i18n("按标点符号切"),
                        ],
                        value=i18n("凑四句一切"),
                        interactive=True,
                        scale=1,
                    )
                    super_sampling = gr.Checkbox(
                        label=i18n("音频超采样(仅对V3生效))"), value=False, interactive=True, show_label=True
                    )

                with gr.Row():
                    parallel_infer = gr.Checkbox(label=i18n("并行推理"), value=True, interactive=True, show_label=True)
                    split_bucket = gr.Checkbox(
                        label=i18n("数据分桶(并行推理时会降低一点计算量)"),
                        value=True,
                        interactive=True,
                        show_label=True,
                    )

                with gr.Row():
                    seed = gr.Number(label=i18n("随机种子"), value=-1)
                    keep_random = gr.Checkbox(label=i18n("保持随机"), value=True, interactive=True, show_label=True)

                output = gr.Audio(label=i18n("输出的语音"))
                with gr.Row():
                    inference_button = gr.Button(i18n("合成语音"), variant="primary")
                    stop_infer = gr.Button(i18n("终止合成"), variant="primary")

        inference_button.click(
            inference,
            [
                text,
                text_language,
                inp_ref,
                inp_refs,
                prompt_text,
                prompt_language,
                top_k,
                top_p,
                temperature,
                how_to_cut,
                batch_size,
                speed_factor,
                ref_text_free,
                split_bucket,
                fragment_interval,
                seed,
                keep_random,
                parallel_infer,
                repetition_penalty,
                sample_steps,
                super_sampling,
            ],
            [output, seed],
        )
        stop_infer.click(tts_pipeline.stop, [], [])
        SoVITS_dropdown.change(
            change_sovits_weights,
            [SoVITS_dropdown, prompt_language, text_language],
            [
                prompt_language,
                text_language,
                prompt_text,
                prompt_language,
                text,
                text_language,
                sample_steps,
                inp_refs,
                ref_text_free,
                inference_button,
            ],
        )  #
        GPT_dropdown.change(change_gpt_weights, [GPT_dropdown], [])

    with gr.Group():
        gr.Markdown(
            value=i18n(
                "文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。"
            )
        )
        with gr.Row():
            text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"), value="", lines=4)
            with gr.Column():
                _how_to_cut = gr.Radio(
                    label=i18n("怎么切"),
                    choices=[
                        i18n("不切"),
                        i18n("凑四句一切"),
                        i18n("凑50字一切"),
                        i18n("按中文句号。切"),
                        i18n("按英文句号.切"),
                        i18n("按标点符号切"),
                    ],
                    value=i18n("凑四句一切"),
                    interactive=True,
                )
                cut_text = gr.Button(i18n("切分"), variant="primary")

            def to_cut(text_inp, how_to_cut):
                if len(text_inp.strip()) == 0 or text_inp == []:
                    return ""
                method = get_method(cut_method[how_to_cut])
                return method(text_inp)

            text_opt = gr.Textbox(label=i18n("切分后文本"), value="", lines=4)
            cut_text.click(to_cut, [text_inp, _how_to_cut], [text_opt])
        gr.Markdown(value=i18n("后续将支持转音素、手工修改音素、语音合成分步执行。"))

if __name__ == "__main__":
    app.queue().launch(  # concurrency_count=511, max_size=1022
        server_name="0.0.0.0",
        inbrowser=True,
        share=is_share,
        server_port=infer_ttswebui,
        # quiet=True,
    )