File size: 50,393 Bytes
60ea83f 887e50c 60ea83f 6b9b9b6 60ea83f 887e50c 60ea83f 622b6ed 60ea83f 2c84dcb 60ea83f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 |
"""
按中英混合识别
按日英混合识别
多语种启动切分识别语种
全部按中文识别
全部按英文识别
全部按日文识别
"""
import json
import logging
import os
import re
import sys
import traceback
import warnings
import torch
import torchaudio
from text.LangSegmenter import LangSegmenter
logging.getLogger("markdown_it").setLevel(logging.ERROR)
logging.getLogger("urllib3").setLevel(logging.ERROR)
logging.getLogger("httpcore").setLevel(logging.ERROR)
logging.getLogger("httpx").setLevel(logging.ERROR)
logging.getLogger("asyncio").setLevel(logging.ERROR)
logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
logging.getLogger("multipart.multipart").setLevel(logging.ERROR)
warnings.simplefilter(action="ignore", category=FutureWarning)
version = model_version = os.environ.get("version", "v2ProPlus")
from config import change_choices, get_weights_names, name2gpt_path, name2sovits_path
SoVITS_names, GPT_names = get_weights_names()
from config import pretrained_sovits_name
path_sovits_v3 = pretrained_sovits_name["v3"]
path_sovits_v4 = pretrained_sovits_name["v4"]
is_exist_s2gv3 = os.path.exists(path_sovits_v3)
is_exist_s2gv4 = os.path.exists(path_sovits_v4)
if os.path.exists("./weight.json"):
pass
else:
with open("./weight.json", "w", encoding="utf-8") as file:
json.dump({"GPT": {}, "SoVITS": {}}, file)
with open("./weight.json", "r", encoding="utf-8") as file:
weight_data = file.read()
weight_data = json.loads(weight_data)
gpt_path = os.environ.get("gpt_path", weight_data.get("GPT", {}).get(version, GPT_names[-1]))
sovits_path = os.environ.get("sovits_path", weight_data.get("SoVITS", {}).get(version, SoVITS_names[0]))
if isinstance(gpt_path, list):
gpt_path = gpt_path[0]
if isinstance(sovits_path, list):
sovits_path = sovits_path[0]
# print(2333333)
# print(os.environ["gpt_path"])
# print(gpt_path)
# print(GPT_names)
# print(weight_data)
# print(weight_data.get("GPT", {}))
# print(version)###GPT version里没有s2的v2pro
# print(weight_data.get("GPT", {}).get(version, GPT_names[-1]))
from huggingface_hub import snapshot_download
snapshot_download(repo_id="lj1995/GPT-SoVITS",local_dir="pretrained_models",repo_type="model")
cnhubert_base_path = os.environ.get("cnhubert_base_path", "pretrained_models/chinese-hubert-base")
bert_path = os.environ.get("bert_path", "pretrained_models/chinese-roberta-wwm-ext-large")
infer_ttswebui = os.environ.get("infer_ttswebui", 7860)
infer_ttswebui = int(infer_ttswebui)
is_share = os.environ.get("is_share", "False")
is_share = eval(is_share)
if "_CUDA_VISIBLE_DEVICES" in os.environ:
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
# is_half=False
punctuation = set(["!", "?", "…", ",", ".", "-", " "])
import gradio as gr
import librosa
import numpy as np
from feature_extractor import cnhubert
from transformers import AutoModelForMaskedLM, AutoTokenizer
cnhubert.cnhubert_base_path = cnhubert_base_path
import random
from module.models import Generator, SynthesizerTrn, SynthesizerTrnV3
def set_seed(seed):
if seed == -1:
seed = random.randint(0, 1000000)
seed = int(seed)
random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
# set_seed(42)
from time import time as ttime
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
from peft import LoraConfig, get_peft_model
from text import cleaned_text_to_sequence
from text.cleaner import clean_text
from tools.assets import css, js, top_html
from tools.i18n.i18n import I18nAuto, scan_language_list
language = os.environ.get("language", "Auto")
language = sys.argv[-1] if sys.argv[-1] in scan_language_list() else language
i18n = I18nAuto(language=language)
# os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
dict_language_v1 = {
i18n("中文"): "all_zh", # 全部按中文识别
i18n("英文"): "en", # 全部按英文识别#######不变
i18n("日文"): "all_ja", # 全部按日文识别
i18n("中英混合"): "zh", # 按中英混合识别####不变
i18n("日英混合"): "ja", # 按日英混合识别####不变
i18n("多语种混合"): "auto", # 多语种启动切分识别语种
}
dict_language_v2 = {
i18n("中文"): "all_zh", # 全部按中文识别
i18n("英文"): "en", # 全部按英文识别#######不变
i18n("日文"): "all_ja", # 全部按日文识别
i18n("粤语"): "all_yue", # 全部按中文识别
i18n("韩文"): "all_ko", # 全部按韩文识别
i18n("中英混合"): "zh", # 按中英混合识别####不变
i18n("日英混合"): "ja", # 按日英混合识别####不变
i18n("粤英混合"): "yue", # 按粤英混合识别####不变
i18n("韩英混合"): "ko", # 按韩英混合识别####不变
i18n("多语种混合"): "auto", # 多语种启动切分识别语种
i18n("多语种混合(粤语)"): "auto_yue", # 多语种启动切分识别语种
}
dict_language = dict_language_v1 if version == "v1" else dict_language_v2
tokenizer = AutoTokenizer.from_pretrained(bert_path)
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
if is_half == True:
bert_model = bert_model.half().to(device)
else:
bert_model = bert_model.to(device)
def get_bert_feature(text, word2ph):
with torch.no_grad():
inputs = tokenizer(text, return_tensors="pt")
for i in inputs:
inputs[i] = inputs[i].to(device)
res = bert_model(**inputs, output_hidden_states=True)
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
assert len(word2ph) == len(text)
phone_level_feature = []
for i in range(len(word2ph)):
repeat_feature = res[i].repeat(word2ph[i], 1)
phone_level_feature.append(repeat_feature)
phone_level_feature = torch.cat(phone_level_feature, dim=0)
return phone_level_feature.T
class DictToAttrRecursive(dict):
def __init__(self, input_dict):
super().__init__(input_dict)
for key, value in input_dict.items():
if isinstance(value, dict):
value = DictToAttrRecursive(value)
self[key] = value
setattr(self, key, value)
def __getattr__(self, item):
try:
return self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
def __setattr__(self, key, value):
if isinstance(value, dict):
value = DictToAttrRecursive(value)
super(DictToAttrRecursive, self).__setitem__(key, value)
super().__setattr__(key, value)
def __delattr__(self, item):
try:
del self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
ssl_model = cnhubert.get_model()
if is_half == True:
ssl_model = ssl_model.half().to(device)
else:
ssl_model = ssl_model.to(device)
###todo:put them to process_ckpt and modify my_save func (save sovits weights), gpt save weights use my_save in process_ckpt
# symbol_version-model_version-if_lora_v3
from process_ckpt import get_sovits_version_from_path_fast, load_sovits_new
v3v4set = {"v3", "v4"}
def change_sovits_weights(sovits_path, prompt_language=None, text_language=None):
if "!" in sovits_path or "!" in sovits_path:
sovits_path = name2sovits_path[sovits_path]
global vq_model, hps, version, model_version, dict_language, if_lora_v3
version, model_version, if_lora_v3 = get_sovits_version_from_path_fast(sovits_path)
print(sovits_path, version, model_version, if_lora_v3)
is_exist = is_exist_s2gv3 if model_version == "v3" else is_exist_s2gv4
path_sovits = path_sovits_v3 if model_version == "v3" else path_sovits_v4
if if_lora_v3 == True and is_exist == False:
info = path_sovits + "SoVITS %s" % model_version + i18n("底模缺失,无法加载相应 LoRA 权重")
gr.Warning(info)
raise FileExistsError(info)
dict_language = dict_language_v1 if version == "v1" else dict_language_v2
if prompt_language is not None and text_language is not None:
if prompt_language in list(dict_language.keys()):
prompt_text_update, prompt_language_update = (
{"__type__": "update"},
{"__type__": "update", "value": prompt_language},
)
else:
prompt_text_update = {"__type__": "update", "value": ""}
prompt_language_update = {"__type__": "update", "value": i18n("中文")}
if text_language in list(dict_language.keys()):
text_update, text_language_update = {"__type__": "update"}, {"__type__": "update", "value": text_language}
else:
text_update = {"__type__": "update", "value": ""}
text_language_update = {"__type__": "update", "value": i18n("中文")}
if model_version in v3v4set:
visible_sample_steps = True
visible_inp_refs = False
else:
visible_sample_steps = False
visible_inp_refs = True
yield (
{"__type__": "update", "choices": list(dict_language.keys())},
{"__type__": "update", "choices": list(dict_language.keys())},
prompt_text_update,
prompt_language_update,
text_update,
text_language_update,
{
"__type__": "update",
"visible": visible_sample_steps,
"value": 32 if model_version == "v3" else 8,
"choices": [4, 8, 16, 32, 64, 128] if model_version == "v3" else [4, 8, 16, 32],
},
{"__type__": "update", "visible": visible_inp_refs},
{"__type__": "update", "value": False, "interactive": True if model_version not in v3v4set else False},
{"__type__": "update", "visible": True if model_version == "v3" else False},
{"__type__": "update", "value": i18n("模型加载中,请等待"), "interactive": False},
)
dict_s2 = load_sovits_new(sovits_path)
hps = dict_s2["config"]
hps = DictToAttrRecursive(hps)
hps.model.semantic_frame_rate = "25hz"
if "enc_p.text_embedding.weight" not in dict_s2["weight"]:
hps.model.version = "v2" # v3model,v2sybomls
elif dict_s2["weight"]["enc_p.text_embedding.weight"].shape[0] == 322:
hps.model.version = "v1"
else:
hps.model.version = "v2"
version = hps.model.version
# print("sovits版本:",hps.model.version)
if model_version not in v3v4set:
if "Pro" not in model_version:
model_version = version
else:
hps.model.version = model_version
vq_model = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model,
)
else:
hps.model.version = model_version
vq_model = SynthesizerTrnV3(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model,
)
if "pretrained" not in sovits_path:
try:
del vq_model.enc_q
except:
pass
if is_half == True:
vq_model = vq_model.half().to(device)
else:
vq_model = vq_model.to(device)
vq_model.eval()
if if_lora_v3 == False:
print("loading sovits_%s" % model_version, vq_model.load_state_dict(dict_s2["weight"], strict=False))
else:
path_sovits = path_sovits_v3 if model_version == "v3" else path_sovits_v4
print(
"loading sovits_%spretrained_G" % model_version,
vq_model.load_state_dict(load_sovits_new(path_sovits)["weight"], strict=False),
)
lora_rank = dict_s2["lora_rank"]
lora_config = LoraConfig(
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
r=lora_rank,
lora_alpha=lora_rank,
init_lora_weights=True,
)
vq_model.cfm = get_peft_model(vq_model.cfm, lora_config)
print("loading sovits_%s_lora%s" % (model_version, lora_rank))
vq_model.load_state_dict(dict_s2["weight"], strict=False)
vq_model.cfm = vq_model.cfm.merge_and_unload()
# torch.save(vq_model.state_dict(),"merge_win.pth")
vq_model.eval()
yield (
{"__type__": "update", "choices": list(dict_language.keys())},
{"__type__": "update", "choices": list(dict_language.keys())},
prompt_text_update,
prompt_language_update,
text_update,
text_language_update,
{
"__type__": "update",
"visible": visible_sample_steps,
"value": 32 if model_version == "v3" else 8,
"choices": [4, 8, 16, 32, 64, 128] if model_version == "v3" else [4, 8, 16, 32],
},
{"__type__": "update", "visible": visible_inp_refs},
{"__type__": "update", "value": False, "interactive": True if model_version not in v3v4set else False},
{"__type__": "update", "visible": True if model_version == "v3" else False},
{"__type__": "update", "value": i18n("合成语音"), "interactive": True},
)
with open("./weight.json") as f:
data = f.read()
data = json.loads(data)
data["SoVITS"][version] = sovits_path
with open("./weight.json", "w") as f:
f.write(json.dumps(data))
try:
next(change_sovits_weights(sovits_path))
except:
pass
def change_gpt_weights(gpt_path):
if "!" in gpt_path or "!" in gpt_path:
gpt_path = name2gpt_path[gpt_path]
global hz, max_sec, t2s_model, config
hz = 50
dict_s1 = torch.load(gpt_path, map_location="cpu", weights_only=False)
config = dict_s1["config"]
max_sec = config["data"]["max_sec"]
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
t2s_model.load_state_dict(dict_s1["weight"])
if is_half == True:
t2s_model = t2s_model.half()
t2s_model = t2s_model.to(device)
t2s_model.eval()
# total = sum([param.nelement() for param in t2s_model.parameters()])
# print("Number of parameter: %.2fM" % (total / 1e6))
with open("./weight.json") as f:
data = f.read()
data = json.loads(data)
data["GPT"][version] = gpt_path
with open("./weight.json", "w") as f:
f.write(json.dumps(data))
change_gpt_weights(gpt_path)
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
import torch
now_dir = os.getcwd()
def clean_hifigan_model():
global hifigan_model
if hifigan_model:
hifigan_model = hifigan_model.cpu()
hifigan_model = None
try:
torch.cuda.empty_cache()
except:
pass
def clean_bigvgan_model():
global bigvgan_model
if bigvgan_model:
bigvgan_model = bigvgan_model.cpu()
bigvgan_model = None
try:
torch.cuda.empty_cache()
except:
pass
def clean_sv_cn_model():
global sv_cn_model
if sv_cn_model:
sv_cn_model.embedding_model = sv_cn_model.embedding_model.cpu()
sv_cn_model = None
try:
torch.cuda.empty_cache()
except:
pass
def init_bigvgan():
global bigvgan_model, hifigan_model, sv_cn_model
from BigVGAN import bigvgan
bigvgan_model = bigvgan.BigVGAN.from_pretrained(
"%s/pretrained_models/models--nvidia--bigvgan_v2_24khz_100band_256x" % (now_dir,),
use_cuda_kernel=False,
) # if True, RuntimeError: Ninja is required to load C++ extensions
# remove weight norm in the model and set to eval mode
bigvgan_model.remove_weight_norm()
bigvgan_model = bigvgan_model.eval()
clean_hifigan_model()
clean_sv_cn_model()
if is_half == True:
bigvgan_model = bigvgan_model.half().to(device)
else:
bigvgan_model = bigvgan_model.to(device)
def init_hifigan():
global hifigan_model, bigvgan_model, sv_cn_model
hifigan_model = Generator(
initial_channel=100,
resblock="1",
resblock_kernel_sizes=[3, 7, 11],
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
upsample_rates=[10, 6, 2, 2, 2],
upsample_initial_channel=512,
upsample_kernel_sizes=[20, 12, 4, 4, 4],
gin_channels=0,
is_bias=True,
)
hifigan_model.eval()
hifigan_model.remove_weight_norm()
state_dict_g = torch.load(
"%s/pretrained_models/gsv-v4-pretrained/vocoder.pth" % (now_dir,),
map_location="cpu",
weights_only=False,
)
print("loading vocoder", hifigan_model.load_state_dict(state_dict_g))
clean_bigvgan_model()
clean_sv_cn_model()
if is_half == True:
hifigan_model = hifigan_model.half().to(device)
else:
hifigan_model = hifigan_model.to(device)
from sv import SV
def init_sv_cn():
global hifigan_model, bigvgan_model, sv_cn_model
sv_cn_model = SV(device, is_half)
clean_bigvgan_model()
clean_hifigan_model()
bigvgan_model = hifigan_model = sv_cn_model = None
if model_version == "v3":
init_bigvgan()
if model_version == "v4":
init_hifigan()
if model_version in {"v2Pro", "v2ProPlus"}:
init_sv_cn()
resample_transform_dict = {}
def resample(audio_tensor, sr0, sr1, device):
global resample_transform_dict
key = "%s-%s-%s" % (sr0, sr1, str(device))
if key not in resample_transform_dict:
resample_transform_dict[key] = torchaudio.transforms.Resample(sr0, sr1).to(device)
return resample_transform_dict[key](audio_tensor)
def get_spepc(hps, filename, dtype, device, is_v2pro=False):
# audio = load_audio(filename, int(hps.data.sampling_rate))
# audio, sampling_rate = librosa.load(filename, sr=int(hps.data.sampling_rate))
# audio = torch.FloatTensor(audio)
sr1 = int(hps.data.sampling_rate)
audio, sr0 = torchaudio.load(filename)
if sr0 != sr1:
audio = audio.to(device)
if audio.shape[0] == 2:
audio = audio.mean(0).unsqueeze(0)
audio = resample(audio, sr0, sr1, device)
else:
audio = audio.to(device)
if audio.shape[0] == 2:
audio = audio.mean(0).unsqueeze(0)
maxx = audio.abs().max()
if maxx > 1:
audio /= min(2, maxx)
spec = spectrogram_torch(
audio,
hps.data.filter_length,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
center=False,
)
spec = spec.to(dtype)
if is_v2pro == True:
audio = resample(audio, sr1, 16000, device).to(dtype)
return spec, audio
def clean_text_inf(text, language, version):
language = language.replace("all_", "")
phones, word2ph, norm_text = clean_text(text, language, version)
phones = cleaned_text_to_sequence(phones, version)
return phones, word2ph, norm_text
dtype = torch.float16 if is_half == True else torch.float32
def get_bert_inf(phones, word2ph, norm_text, language):
language = language.replace("all_", "")
if language == "zh":
bert = get_bert_feature(norm_text, word2ph).to(device) # .to(dtype)
else:
bert = torch.zeros(
(1024, len(phones)),
dtype=torch.float16 if is_half == True else torch.float32,
).to(device)
return bert
splits = {
",",
"。",
"?",
"!",
",",
".",
"?",
"!",
"~",
":",
":",
"—",
"…",
}
def get_first(text):
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
text = re.split(pattern, text)[0].strip()
return text
from text import chinese
def get_phones_and_bert(text, language, version, final=False):
if language in {"en", "all_zh", "all_ja", "all_ko", "all_yue"}:
formattext = text
while " " in formattext:
formattext = formattext.replace(" ", " ")
if language == "all_zh":
if re.search(r"[A-Za-z]", formattext):
formattext = re.sub(r"[a-z]", lambda x: x.group(0).upper(), formattext)
formattext = chinese.mix_text_normalize(formattext)
return get_phones_and_bert(formattext, "zh", version)
else:
phones, word2ph, norm_text = clean_text_inf(formattext, language, version)
bert = get_bert_feature(norm_text, word2ph).to(device)
elif language == "all_yue" and re.search(r"[A-Za-z]", formattext):
formattext = re.sub(r"[a-z]", lambda x: x.group(0).upper(), formattext)
formattext = chinese.mix_text_normalize(formattext)
return get_phones_and_bert(formattext, "yue", version)
else:
phones, word2ph, norm_text = clean_text_inf(formattext, language, version)
bert = torch.zeros(
(1024, len(phones)),
dtype=torch.float16 if is_half == True else torch.float32,
).to(device)
elif language in {"zh", "ja", "ko", "yue", "auto", "auto_yue"}:
textlist = []
langlist = []
if language == "auto":
for tmp in LangSegmenter.getTexts(text):
langlist.append(tmp["lang"])
textlist.append(tmp["text"])
elif language == "auto_yue":
for tmp in LangSegmenter.getTexts(text):
if tmp["lang"] == "zh":
tmp["lang"] = "yue"
langlist.append(tmp["lang"])
textlist.append(tmp["text"])
else:
for tmp in LangSegmenter.getTexts(text):
if langlist:
if (tmp["lang"] == "en" and langlist[-1] == "en") or (tmp["lang"] != "en" and langlist[-1] != "en"):
textlist[-1] += tmp["text"]
continue
if tmp["lang"] == "en":
langlist.append(tmp["lang"])
else:
# 因无法区别中日韩文汉字,以用户输入为准
langlist.append(language)
textlist.append(tmp["text"])
print(textlist)
print(langlist)
phones_list = []
bert_list = []
norm_text_list = []
for i in range(len(textlist)):
lang = langlist[i]
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang, version)
bert = get_bert_inf(phones, word2ph, norm_text, lang)
phones_list.append(phones)
norm_text_list.append(norm_text)
bert_list.append(bert)
bert = torch.cat(bert_list, dim=1)
phones = sum(phones_list, [])
norm_text = "".join(norm_text_list)
if not final and len(phones) < 6:
return get_phones_and_bert("." + text, language, version, final=True)
return phones, bert.to(dtype), norm_text
from module.mel_processing import mel_spectrogram_torch, spectrogram_torch
spec_min = -12
spec_max = 2
def norm_spec(x):
return (x - spec_min) / (spec_max - spec_min) * 2 - 1
def denorm_spec(x):
return (x + 1) / 2 * (spec_max - spec_min) + spec_min
mel_fn = lambda x: mel_spectrogram_torch(
x,
**{
"n_fft": 1024,
"win_size": 1024,
"hop_size": 256,
"num_mels": 100,
"sampling_rate": 24000,
"fmin": 0,
"fmax": None,
"center": False,
},
)
mel_fn_v4 = lambda x: mel_spectrogram_torch(
x,
**{
"n_fft": 1280,
"win_size": 1280,
"hop_size": 320,
"num_mels": 100,
"sampling_rate": 32000,
"fmin": 0,
"fmax": None,
"center": False,
},
)
def merge_short_text_in_array(texts, threshold):
if (len(texts)) < 2:
return texts
result = []
text = ""
for ele in texts:
text += ele
if len(text) >= threshold:
result.append(text)
text = ""
if len(text) > 0:
if len(result) == 0:
result.append(text)
else:
result[len(result) - 1] += text
return result
sr_model = None
def audio_sr(audio, sr):
global sr_model
if sr_model == None:
from tools.audio_sr import AP_BWE
try:
sr_model = AP_BWE(device, DictToAttrRecursive)
except FileNotFoundError:
gr.Warning(i18n("你没有下载超分模型的参数,因此不进行超分。如想超分请先参照教程把文件下载好"))
return audio.cpu().detach().numpy(), sr
return sr_model(audio, sr)
##ref_wav_path+prompt_text+prompt_language+text(单个)+text_language+top_k+top_p+temperature
# cache_tokens={}#暂未实现清理机制
cache = {}
def get_tts_wav(
ref_wav_path,
prompt_text,
prompt_language,
text,
text_language,
how_to_cut=i18n("不切"),
top_k=20,
top_p=0.6,
temperature=0.6,
ref_free=False,
speed=1,
if_freeze=False,
inp_refs=None,
sample_steps=8,
if_sr=False,
pause_second=0.3,
):
global cache
if ref_wav_path:
pass
else:
gr.Warning(i18n("请上传参考音频"))
if text:
pass
else:
gr.Warning(i18n("请填入推理文本"))
t = []
if prompt_text is None or len(prompt_text) == 0:
ref_free = True
if model_version in v3v4set:
ref_free = False # s2v3暂不支持ref_free
else:
if_sr = False
if model_version not in {"v3", "v4", "v2Pro", "v2ProPlus"}:
clean_bigvgan_model()
clean_hifigan_model()
clean_sv_cn_model()
t0 = ttime()
prompt_language = dict_language[prompt_language]
text_language = dict_language[text_language]
if not ref_free:
prompt_text = prompt_text.strip("\n")
if prompt_text[-1] not in splits:
prompt_text += "。" if prompt_language != "en" else "."
print(i18n("实际输入的参考文本:"), prompt_text)
text = text.strip("\n")
# if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text
print(i18n("实际输入的目标文本:"), text)
zero_wav = np.zeros(
int(hps.data.sampling_rate * pause_second),
dtype=np.float16 if is_half == True else np.float32,
)
zero_wav_torch = torch.from_numpy(zero_wav)
if is_half == True:
zero_wav_torch = zero_wav_torch.half().to(device)
else:
zero_wav_torch = zero_wav_torch.to(device)
if not ref_free:
with torch.no_grad():
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
if wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000:
gr.Warning(i18n("参考音频在3~10秒范围外,请更换!"))
raise OSError(i18n("参考音频在3~10秒范围外,请更换!"))
wav16k = torch.from_numpy(wav16k)
if is_half == True:
wav16k = wav16k.half().to(device)
else:
wav16k = wav16k.to(device)
wav16k = torch.cat([wav16k, zero_wav_torch])
ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2) # .float()
codes = vq_model.extract_latent(ssl_content)
prompt_semantic = codes[0, 0]
prompt = prompt_semantic.unsqueeze(0).to(device)
t1 = ttime()
t.append(t1 - t0)
if how_to_cut == i18n("凑四句一切"):
text = cut1(text)
elif how_to_cut == i18n("凑50字一切"):
text = cut2(text)
elif how_to_cut == i18n("按中文句号。切"):
text = cut3(text)
elif how_to_cut == i18n("按英文句号.切"):
text = cut4(text)
elif how_to_cut == i18n("按标点符号切"):
text = cut5(text)
while "\n\n" in text:
text = text.replace("\n\n", "\n")
print(i18n("实际输入的目标文本(切句后):"), text)
texts = text.split("\n")
texts = process_text(texts)
texts = merge_short_text_in_array(texts, 5)
audio_opt = []
###s2v3暂不支持ref_free
if not ref_free:
phones1, bert1, norm_text1 = get_phones_and_bert(prompt_text, prompt_language, version)
for i_text, text in enumerate(texts):
# 解决输入目标文本的空行导致报错的问题
if len(text.strip()) == 0:
continue
if text[-1] not in splits:
text += "。" if text_language != "en" else "."
print(i18n("实际输入的目标文本(每句):"), text)
phones2, bert2, norm_text2 = get_phones_and_bert(text, text_language, version)
print(i18n("前端处理后的文本(每句):"), norm_text2)
if not ref_free:
bert = torch.cat([bert1, bert2], 1)
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
else:
bert = bert2
all_phoneme_ids = torch.LongTensor(phones2).to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
t2 = ttime()
# cache_key="%s-%s-%s-%s-%s-%s-%s-%s"%(ref_wav_path,prompt_text,prompt_language,text,text_language,top_k,top_p,temperature)
# print(cache.keys(),if_freeze)
if i_text in cache and if_freeze == True:
pred_semantic = cache[i_text]
else:
with torch.no_grad():
pred_semantic, idx = t2s_model.model.infer_panel(
all_phoneme_ids,
all_phoneme_len,
None if ref_free else prompt,
bert,
# prompt_phone_len=ph_offset,
top_k=top_k,
top_p=top_p,
temperature=temperature,
early_stop_num=hz * max_sec,
)
pred_semantic = pred_semantic[:, -idx:].unsqueeze(0)
cache[i_text] = pred_semantic
t3 = ttime()
is_v2pro = model_version in {"v2Pro", "v2ProPlus"}
# print(23333,is_v2pro,model_version)
###v3不存在以下逻辑和inp_refs
if model_version not in v3v4set:
refers = []
if is_v2pro:
sv_emb = []
if sv_cn_model == None:
init_sv_cn()
if inp_refs:
for path in inp_refs:
try: #####这里加上提取sv的逻辑,要么一堆sv一堆refer,要么单个sv单个refer
refer, audio_tensor = get_spepc(hps, path.name, dtype, device, is_v2pro)
refers.append(refer)
if is_v2pro:
sv_emb.append(sv_cn_model.compute_embedding3(audio_tensor))
except:
traceback.print_exc()
if len(refers) == 0:
refers, audio_tensor = get_spepc(hps, ref_wav_path, dtype, device, is_v2pro)
refers = [refers]
if is_v2pro:
sv_emb = [sv_cn_model.compute_embedding3(audio_tensor)]
if is_v2pro:
audio = vq_model.decode(
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refers, speed=speed, sv_emb=sv_emb
)[0][0]
else:
audio = vq_model.decode(
pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refers, speed=speed
)[0][0]
else:
refer, audio_tensor = get_spepc(hps, ref_wav_path, dtype, device)
phoneme_ids0 = torch.LongTensor(phones1).to(device).unsqueeze(0)
phoneme_ids1 = torch.LongTensor(phones2).to(device).unsqueeze(0)
fea_ref, ge = vq_model.decode_encp(prompt.unsqueeze(0), phoneme_ids0, refer)
ref_audio, sr = torchaudio.load(ref_wav_path)
ref_audio = ref_audio.to(device).float()
if ref_audio.shape[0] == 2:
ref_audio = ref_audio.mean(0).unsqueeze(0)
tgt_sr = 24000 if model_version == "v3" else 32000
if sr != tgt_sr:
ref_audio = resample(ref_audio, sr, tgt_sr, device)
# print("ref_audio",ref_audio.abs().mean())
mel2 = mel_fn(ref_audio) if model_version == "v3" else mel_fn_v4(ref_audio)
mel2 = norm_spec(mel2)
T_min = min(mel2.shape[2], fea_ref.shape[2])
mel2 = mel2[:, :, :T_min]
fea_ref = fea_ref[:, :, :T_min]
Tref = 468 if model_version == "v3" else 500
Tchunk = 934 if model_version == "v3" else 1000
if T_min > Tref:
mel2 = mel2[:, :, -Tref:]
fea_ref = fea_ref[:, :, -Tref:]
T_min = Tref
chunk_len = Tchunk - T_min
mel2 = mel2.to(dtype)
fea_todo, ge = vq_model.decode_encp(pred_semantic, phoneme_ids1, refer, ge, speed)
cfm_resss = []
idx = 0
while 1:
fea_todo_chunk = fea_todo[:, :, idx : idx + chunk_len]
if fea_todo_chunk.shape[-1] == 0:
break
idx += chunk_len
fea = torch.cat([fea_ref, fea_todo_chunk], 2).transpose(2, 1)
cfm_res = vq_model.cfm.inference(
fea, torch.LongTensor([fea.size(1)]).to(fea.device), mel2, sample_steps, inference_cfg_rate=0
)
cfm_res = cfm_res[:, :, mel2.shape[2] :]
mel2 = cfm_res[:, :, -T_min:]
fea_ref = fea_todo_chunk[:, :, -T_min:]
cfm_resss.append(cfm_res)
cfm_res = torch.cat(cfm_resss, 2)
cfm_res = denorm_spec(cfm_res)
if model_version == "v3":
if bigvgan_model == None:
init_bigvgan()
else: # v4
if hifigan_model == None:
init_hifigan()
vocoder_model = bigvgan_model if model_version == "v3" else hifigan_model
with torch.inference_mode():
wav_gen = vocoder_model(cfm_res)
audio = wav_gen[0][0] # .cpu().detach().numpy()
max_audio = torch.abs(audio).max() # 简单防止16bit爆音
if max_audio > 1:
audio = audio / max_audio
audio_opt.append(audio)
audio_opt.append(zero_wav_torch) # zero_wav
t4 = ttime()
t.extend([t2 - t1, t3 - t2, t4 - t3])
t1 = ttime()
print("%.3f\t%.3f\t%.3f\t%.3f" % (t[0], sum(t[1::3]), sum(t[2::3]), sum(t[3::3])))
audio_opt = torch.cat(audio_opt, 0) # np.concatenate
if model_version in {"v1", "v2", "v2Pro", "v2ProPlus"}:
opt_sr = 32000
elif model_version == "v3":
opt_sr = 24000
else:
opt_sr = 48000 # v4
if if_sr == True and opt_sr == 24000:
print(i18n("音频超分中"))
audio_opt, opt_sr = audio_sr(audio_opt.unsqueeze(0), opt_sr)
max_audio = np.abs(audio_opt).max()
if max_audio > 1:
audio_opt /= max_audio
else:
audio_opt = audio_opt.cpu().detach().numpy()
yield opt_sr, (audio_opt * 32767).astype(np.int16)
def split(todo_text):
todo_text = todo_text.replace("……", "。").replace("——", ",")
if todo_text[-1] not in splits:
todo_text += "。"
i_split_head = i_split_tail = 0
len_text = len(todo_text)
todo_texts = []
while 1:
if i_split_head >= len_text:
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
if todo_text[i_split_head] in splits:
i_split_head += 1
todo_texts.append(todo_text[i_split_tail:i_split_head])
i_split_tail = i_split_head
else:
i_split_head += 1
return todo_texts
def cut1(inp):
inp = inp.strip("\n")
inps = split(inp)
split_idx = list(range(0, len(inps), 4))
split_idx[-1] = None
if len(split_idx) > 1:
opts = []
for idx in range(len(split_idx) - 1):
opts.append("".join(inps[split_idx[idx] : split_idx[idx + 1]]))
else:
opts = [inp]
opts = [item for item in opts if not set(item).issubset(punctuation)]
return "\n".join(opts)
def cut2(inp):
inp = inp.strip("\n")
inps = split(inp)
if len(inps) < 2:
return inp
opts = []
summ = 0
tmp_str = ""
for i in range(len(inps)):
summ += len(inps[i])
tmp_str += inps[i]
if summ > 50:
summ = 0
opts.append(tmp_str)
tmp_str = ""
if tmp_str != "":
opts.append(tmp_str)
# print(opts)
if len(opts) > 1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
opts[-2] = opts[-2] + opts[-1]
opts = opts[:-1]
opts = [item for item in opts if not set(item).issubset(punctuation)]
return "\n".join(opts)
def cut3(inp):
inp = inp.strip("\n")
opts = ["%s" % item for item in inp.strip("。").split("。")]
opts = [item for item in opts if not set(item).issubset(punctuation)]
return "\n".join(opts)
def cut4(inp):
inp = inp.strip("\n")
opts = re.split(r"(?<!\d)\.(?!\d)", inp.strip("."))
opts = [item for item in opts if not set(item).issubset(punctuation)]
return "\n".join(opts)
# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/inference_webui.py
def cut5(inp):
inp = inp.strip("\n")
punds = {",", ".", ";", "?", "!", "、", ",", "。", "?", "!", ";", ":", "…"}
mergeitems = []
items = []
for i, char in enumerate(inp):
if char in punds:
if char == "." and i > 0 and i < len(inp) - 1 and inp[i - 1].isdigit() and inp[i + 1].isdigit():
items.append(char)
else:
items.append(char)
mergeitems.append("".join(items))
items = []
else:
items.append(char)
if items:
mergeitems.append("".join(items))
opt = [item for item in mergeitems if not set(item).issubset(punds)]
return "\n".join(opt)
def custom_sort_key(s):
# 使用正则表达式提取字符串中的数字部分和非数字部分
parts = re.split("(\d+)", s)
# 将数字部分转换为整数,非数字部分保持不变
parts = [int(part) if part.isdigit() else part for part in parts]
return parts
def process_text(texts):
_text = []
if all(text in [None, " ", "\n", ""] for text in texts):
raise ValueError(i18n("请输入有效文本"))
for text in texts:
if text in [None, " ", ""]:
pass
else:
_text.append(text)
return _text
def html_center(text, label="p"):
return f"""<div style="text-align: center; margin: 100; padding: 50;">
<{label} style="margin: 0; padding: 0;">{text}</{label}>
</div>"""
def html_left(text, label="p"):
return f"""<div style="text-align: left; margin: 0; padding: 0;">
<{label} style="margin: 0; padding: 0;">{text}</{label}>
</div>"""
with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False, js=js, css=css) as app:
gr.HTML(
top_html.format(
i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.")
+ i18n("如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.")
),
elem_classes="markdown",
)
with gr.Group():
gr.Markdown(html_center(i18n("模型切换"), "h3"))
with gr.Row():
GPT_dropdown = gr.Dropdown(
label=i18n("GPT模型列表"),
choices=sorted(GPT_names, key=custom_sort_key),
value=gpt_path,
interactive=True,
scale=14,
)
SoVITS_dropdown = gr.Dropdown(
label=i18n("SoVITS模型列表"),
choices=sorted(SoVITS_names, key=custom_sort_key),
value=sovits_path,
interactive=True,
scale=14,
)
refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary", scale=14)
refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown])
gr.Markdown(html_center(i18n("*请上传并填写参考信息"), "h3"))
with gr.Row():
inp_ref = gr.Audio(label=i18n("请上传3~10秒内参考音频,超过会报错!"), type="filepath", scale=13)
with gr.Column(scale=13):
ref_text_free = gr.Checkbox(
label=i18n("开启无参考文本模式。不填参考文本亦相当于开启。")
+ i18n("v3暂不支持该模式,使用了会报错。"),
value=False,
interactive=True if model_version not in v3v4set else False,
show_label=True,
scale=1,
)
gr.Markdown(
html_left(
i18n("使用无参考文本模式时建议使用微调的GPT")
+ "<br>"
+ i18n("听不清参考音频说的啥(不晓得写啥)可以开。开启后无视填写的参考文本。")
)
)
prompt_text = gr.Textbox(label=i18n("参考音频的文本"), value="", lines=5, max_lines=5, scale=1)
with gr.Column(scale=14):
prompt_language = gr.Dropdown(
label=i18n("参考音频的语种"),
choices=list(dict_language.keys()),
value=i18n("中文"),
)
inp_refs = (
gr.File(
label=i18n(
"可选项:通过拖拽多个文件上传多个参考音频(建议同性),平均融合他们的音色。如不填写此项,音色由左侧单个参考音频控制。如是微调模型,建议参考音频全部在微调训练集音色内,底模不用管。"
),
file_count="multiple",
)
if model_version not in v3v4set
else gr.File(
label=i18n(
"可选项:通过拖拽多个文件上传多个参考音频(建议同性),平均融合他们的音色。如不填写此项,音色由左侧单个参考音频控制。如是微调模型,建议参考音频全部在微调训练集音色内,底模不用管。"
),
file_count="multiple",
visible=False,
)
)
sample_steps = (
gr.Radio(
label=i18n("采样步数,如果觉得电,提高试试,如果觉得慢,降低试试"),
value=32 if model_version == "v3" else 8,
choices=[4, 8, 16, 32, 64, 128] if model_version == "v3" else [4, 8, 16, 32],
visible=True,
)
if model_version in v3v4set
else gr.Radio(
label=i18n("采样步数,如果觉得电,提高试试,如果觉得慢,降低试试"),
choices=[4, 8, 16, 32, 64, 128] if model_version == "v3" else [4, 8, 16, 32],
visible=False,
value=32 if model_version == "v3" else 8,
)
)
if_sr_Checkbox = gr.Checkbox(
label=i18n("v3输出如果觉得闷可以试试开超分"),
value=False,
interactive=True,
show_label=True,
visible=False if model_version != "v3" else True,
)
gr.Markdown(html_center(i18n("*请填写需要合成的目标文本和语种模式"), "h3"))
with gr.Row():
with gr.Column(scale=13):
text = gr.Textbox(label=i18n("需要合成的文本"), value="", lines=26, max_lines=26)
with gr.Column(scale=7):
text_language = gr.Dropdown(
label=i18n("需要合成的语种") + i18n(".限制范围越小判别效果越好。"),
choices=list(dict_language.keys()),
value=i18n("中文"),
scale=1,
)
how_to_cut = gr.Dropdown(
label=i18n("怎么切"),
choices=[
i18n("不切"),
i18n("凑四句一切"),
i18n("凑50字一切"),
i18n("按中文句号。切"),
i18n("按英文句号.切"),
i18n("按标点符号切"),
],
value=i18n("凑四句一切"),
interactive=True,
scale=1,
)
gr.Markdown(value=html_center(i18n("语速调整,高为更快")))
if_freeze = gr.Checkbox(
label=i18n("是否直接对上次合成结果调整语速和音色。防止随机性。"),
value=False,
interactive=True,
show_label=True,
scale=1,
)
with gr.Row():
speed = gr.Slider(
minimum=0.6, maximum=1.65, step=0.05, label=i18n("语速"), value=1, interactive=True, scale=1
)
pause_second_slider = gr.Slider(
minimum=0.1,
maximum=0.5,
step=0.01,
label=i18n("句间停顿秒数"),
value=0.3,
interactive=True,
scale=1,
)
gr.Markdown(html_center(i18n("GPT采样参数(无参考文本时不要太低。不懂就用默认):")))
top_k = gr.Slider(
minimum=1, maximum=100, step=1, label=i18n("top_k"), value=15, interactive=True, scale=1
)
top_p = gr.Slider(
minimum=0, maximum=1, step=0.05, label=i18n("top_p"), value=1, interactive=True, scale=1
)
temperature = gr.Slider(
minimum=0, maximum=1, step=0.05, label=i18n("temperature"), value=1, interactive=True, scale=1
)
# with gr.Column():
# gr.Markdown(value=i18n("手工调整音素。当音素框不为空时使用手工音素输入推理,无视目标文本框。"))
# phoneme=gr.Textbox(label=i18n("音素框"), value="")
# get_phoneme_button = gr.Button(i18n("目标文本转音素"), variant="primary")
with gr.Row():
inference_button = gr.Button(value=i18n("合成语音"), variant="primary", size="lg", scale=25)
output = gr.Audio(label=i18n("输出的语音"), scale=14)
inference_button.click(
get_tts_wav,
[
inp_ref,
prompt_text,
prompt_language,
text,
text_language,
how_to_cut,
top_k,
top_p,
temperature,
ref_text_free,
speed,
if_freeze,
inp_refs,
sample_steps,
if_sr_Checkbox,
pause_second_slider,
],
[output],
)
SoVITS_dropdown.change(
change_sovits_weights,
[SoVITS_dropdown, prompt_language, text_language],
[
prompt_language,
text_language,
prompt_text,
prompt_language,
text,
text_language,
sample_steps,
inp_refs,
ref_text_free,
if_sr_Checkbox,
inference_button,
],
)
GPT_dropdown.change(change_gpt_weights, [GPT_dropdown], [])
# gr.Markdown(value=i18n("文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。"))
# with gr.Row():
# text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"), value="")
# button1 = gr.Button(i18n("凑四句一切"), variant="primary")
# button2 = gr.Button(i18n("凑50字一切"), variant="primary")
# button3 = gr.Button(i18n("按中文句号。切"), variant="primary")
# button4 = gr.Button(i18n("按英文句号.切"), variant="primary")
# button5 = gr.Button(i18n("按标点符号切"), variant="primary")
# text_opt = gr.Textbox(label=i18n("切分后文本"), value="")
# button1.click(cut1, [text_inp], [text_opt])
# button2.click(cut2, [text_inp], [text_opt])
# button3.click(cut3, [text_inp], [text_opt])
# button4.click(cut4, [text_inp], [text_opt])
# button5.click(cut5, [text_inp], [text_opt])
# gr.Markdown(html_center(i18n("后续将支持转音素、手工修改音素、语音合成分步执行。")))
if __name__ == "__main__":
app.queue().launch( # concurrency_count=511, max_size=1022
server_name="0.0.0.0",
inbrowser=False,
share=is_share,
server_port=infer_ttswebui,
# quiet=True,
)
|