File size: 50,393 Bytes
60ea83f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
887e50c
60ea83f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b9b9b6
60ea83f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
887e50c
60ea83f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
622b6ed
60ea83f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c84dcb
60ea83f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
"""
按中英混合识别
按日英混合识别
多语种启动切分识别语种
全部按中文识别
全部按英文识别
全部按日文识别
"""

import json
import logging
import os
import re
import sys
import traceback
import warnings

import torch
import torchaudio
from text.LangSegmenter import LangSegmenter

logging.getLogger("markdown_it").setLevel(logging.ERROR)
logging.getLogger("urllib3").setLevel(logging.ERROR)
logging.getLogger("httpcore").setLevel(logging.ERROR)
logging.getLogger("httpx").setLevel(logging.ERROR)
logging.getLogger("asyncio").setLevel(logging.ERROR)
logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
logging.getLogger("multipart.multipart").setLevel(logging.ERROR)
warnings.simplefilter(action="ignore", category=FutureWarning)

version = model_version = os.environ.get("version", "v2ProPlus")

from config import change_choices, get_weights_names, name2gpt_path, name2sovits_path

SoVITS_names, GPT_names = get_weights_names()
from config import pretrained_sovits_name

path_sovits_v3 = pretrained_sovits_name["v3"]
path_sovits_v4 = pretrained_sovits_name["v4"]
is_exist_s2gv3 = os.path.exists(path_sovits_v3)
is_exist_s2gv4 = os.path.exists(path_sovits_v4)

if os.path.exists("./weight.json"):
    pass
else:
    with open("./weight.json", "w", encoding="utf-8") as file:
        json.dump({"GPT": {}, "SoVITS": {}}, file)

with open("./weight.json", "r", encoding="utf-8") as file:
    weight_data = file.read()
    weight_data = json.loads(weight_data)
    gpt_path = os.environ.get("gpt_path", weight_data.get("GPT", {}).get(version, GPT_names[-1]))
    sovits_path = os.environ.get("sovits_path", weight_data.get("SoVITS", {}).get(version, SoVITS_names[0]))
    if isinstance(gpt_path, list):
        gpt_path = gpt_path[0]
    if isinstance(sovits_path, list):
        sovits_path = sovits_path[0]

# print(2333333)
# print(os.environ["gpt_path"])
# print(gpt_path)
# print(GPT_names)
# print(weight_data)
# print(weight_data.get("GPT", {}))
# print(version)###GPT version里没有s2的v2pro
# print(weight_data.get("GPT", {}).get(version, GPT_names[-1]))
from huggingface_hub import snapshot_download
snapshot_download(repo_id="lj1995/GPT-SoVITS",local_dir="pretrained_models",repo_type="model")
cnhubert_base_path = os.environ.get("cnhubert_base_path", "pretrained_models/chinese-hubert-base")
bert_path = os.environ.get("bert_path", "pretrained_models/chinese-roberta-wwm-ext-large")
infer_ttswebui = os.environ.get("infer_ttswebui", 7860)
infer_ttswebui = int(infer_ttswebui)
is_share = os.environ.get("is_share", "False")
is_share = eval(is_share)
if "_CUDA_VISIBLE_DEVICES" in os.environ:
    os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
is_half = eval(os.environ.get("is_half", "True")) and torch.cuda.is_available()
# is_half=False
punctuation = set(["!", "?", "…", ",", ".", "-", " "])
import gradio as gr
import librosa
import numpy as np
from feature_extractor import cnhubert
from transformers import AutoModelForMaskedLM, AutoTokenizer

cnhubert.cnhubert_base_path = cnhubert_base_path

import random

from module.models import Generator, SynthesizerTrn, SynthesizerTrnV3


def set_seed(seed):
    if seed == -1:
        seed = random.randint(0, 1000000)
    seed = int(seed)
    random.seed(seed)
    os.environ["PYTHONHASHSEED"] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)


# set_seed(42)

from time import time as ttime

from AR.models.t2s_lightning_module import Text2SemanticLightningModule
from peft import LoraConfig, get_peft_model
from text import cleaned_text_to_sequence
from text.cleaner import clean_text

from tools.assets import css, js, top_html
from tools.i18n.i18n import I18nAuto, scan_language_list

language = os.environ.get("language", "Auto")
language = sys.argv[-1] if sys.argv[-1] in scan_language_list() else language
i18n = I18nAuto(language=language)

# os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1'  # 确保直接启动推理UI时也能够设置。

if torch.cuda.is_available():
    device = "cuda"
else:
    device = "cpu"

dict_language_v1 = {
    i18n("中文"): "all_zh",  # 全部按中文识别
    i18n("英文"): "en",  # 全部按英文识别#######不变
    i18n("日文"): "all_ja",  # 全部按日文识别
    i18n("中英混合"): "zh",  # 按中英混合识别####不变
    i18n("日英混合"): "ja",  # 按日英混合识别####不变
    i18n("多语种混合"): "auto",  # 多语种启动切分识别语种
}
dict_language_v2 = {
    i18n("中文"): "all_zh",  # 全部按中文识别
    i18n("英文"): "en",  # 全部按英文识别#######不变
    i18n("日文"): "all_ja",  # 全部按日文识别
    i18n("粤语"): "all_yue",  # 全部按中文识别
    i18n("韩文"): "all_ko",  # 全部按韩文识别
    i18n("中英混合"): "zh",  # 按中英混合识别####不变
    i18n("日英混合"): "ja",  # 按日英混合识别####不变
    i18n("粤英混合"): "yue",  # 按粤英混合识别####不变
    i18n("韩英混合"): "ko",  # 按韩英混合识别####不变
    i18n("多语种混合"): "auto",  # 多语种启动切分识别语种
    i18n("多语种混合(粤语)"): "auto_yue",  # 多语种启动切分识别语种
}
dict_language = dict_language_v1 if version == "v1" else dict_language_v2

tokenizer = AutoTokenizer.from_pretrained(bert_path)
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
if is_half == True:
    bert_model = bert_model.half().to(device)
else:
    bert_model = bert_model.to(device)


def get_bert_feature(text, word2ph):
    with torch.no_grad():
        inputs = tokenizer(text, return_tensors="pt")
        for i in inputs:
            inputs[i] = inputs[i].to(device)
        res = bert_model(**inputs, output_hidden_states=True)
        res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
    assert len(word2ph) == len(text)
    phone_level_feature = []
    for i in range(len(word2ph)):
        repeat_feature = res[i].repeat(word2ph[i], 1)
        phone_level_feature.append(repeat_feature)
    phone_level_feature = torch.cat(phone_level_feature, dim=0)
    return phone_level_feature.T


class DictToAttrRecursive(dict):
    def __init__(self, input_dict):
        super().__init__(input_dict)
        for key, value in input_dict.items():
            if isinstance(value, dict):
                value = DictToAttrRecursive(value)
            self[key] = value
            setattr(self, key, value)

    def __getattr__(self, item):
        try:
            return self[item]
        except KeyError:
            raise AttributeError(f"Attribute {item} not found")

    def __setattr__(self, key, value):
        if isinstance(value, dict):
            value = DictToAttrRecursive(value)
        super(DictToAttrRecursive, self).__setitem__(key, value)
        super().__setattr__(key, value)

    def __delattr__(self, item):
        try:
            del self[item]
        except KeyError:
            raise AttributeError(f"Attribute {item} not found")


ssl_model = cnhubert.get_model()
if is_half == True:
    ssl_model = ssl_model.half().to(device)
else:
    ssl_model = ssl_model.to(device)


###todo:put them to process_ckpt and modify my_save func (save sovits weights), gpt save weights use my_save in process_ckpt
# symbol_version-model_version-if_lora_v3
from process_ckpt import get_sovits_version_from_path_fast, load_sovits_new

v3v4set = {"v3", "v4"}


def change_sovits_weights(sovits_path, prompt_language=None, text_language=None):
    if "!" in sovits_path or "!" in sovits_path:
        sovits_path = name2sovits_path[sovits_path]
    global vq_model, hps, version, model_version, dict_language, if_lora_v3
    version, model_version, if_lora_v3 = get_sovits_version_from_path_fast(sovits_path)
    print(sovits_path, version, model_version, if_lora_v3)
    is_exist = is_exist_s2gv3 if model_version == "v3" else is_exist_s2gv4
    path_sovits = path_sovits_v3 if model_version == "v3" else path_sovits_v4
    if if_lora_v3 == True and is_exist == False:
        info = path_sovits + "SoVITS %s" % model_version + i18n("底模缺失,无法加载相应 LoRA 权重")
        gr.Warning(info)
        raise FileExistsError(info)
    dict_language = dict_language_v1 if version == "v1" else dict_language_v2
    if prompt_language is not None and text_language is not None:
        if prompt_language in list(dict_language.keys()):
            prompt_text_update, prompt_language_update = (
                {"__type__": "update"},
                {"__type__": "update", "value": prompt_language},
            )
        else:
            prompt_text_update = {"__type__": "update", "value": ""}
            prompt_language_update = {"__type__": "update", "value": i18n("中文")}
        if text_language in list(dict_language.keys()):
            text_update, text_language_update = {"__type__": "update"}, {"__type__": "update", "value": text_language}
        else:
            text_update = {"__type__": "update", "value": ""}
            text_language_update = {"__type__": "update", "value": i18n("中文")}
        if model_version in v3v4set:
            visible_sample_steps = True
            visible_inp_refs = False
        else:
            visible_sample_steps = False
            visible_inp_refs = True
        yield (
            {"__type__": "update", "choices": list(dict_language.keys())},
            {"__type__": "update", "choices": list(dict_language.keys())},
            prompt_text_update,
            prompt_language_update,
            text_update,
            text_language_update,
            {
                "__type__": "update",
                "visible": visible_sample_steps,
                "value": 32 if model_version == "v3" else 8,
                "choices": [4, 8, 16, 32, 64, 128] if model_version == "v3" else [4, 8, 16, 32],
            },
            {"__type__": "update", "visible": visible_inp_refs},
            {"__type__": "update", "value": False, "interactive": True if model_version not in v3v4set else False},
            {"__type__": "update", "visible": True if model_version == "v3" else False},
            {"__type__": "update", "value": i18n("模型加载中,请等待"), "interactive": False},
        )

    dict_s2 = load_sovits_new(sovits_path)
    hps = dict_s2["config"]
    hps = DictToAttrRecursive(hps)
    hps.model.semantic_frame_rate = "25hz"
    if "enc_p.text_embedding.weight" not in dict_s2["weight"]:
        hps.model.version = "v2"  # v3model,v2sybomls
    elif dict_s2["weight"]["enc_p.text_embedding.weight"].shape[0] == 322:
        hps.model.version = "v1"
    else:
        hps.model.version = "v2"
    version = hps.model.version
    # print("sovits版本:",hps.model.version)
    if model_version not in v3v4set:
        if "Pro" not in model_version:
            model_version = version
        else:
            hps.model.version = model_version
        vq_model = SynthesizerTrn(
            hps.data.filter_length // 2 + 1,
            hps.train.segment_size // hps.data.hop_length,
            n_speakers=hps.data.n_speakers,
            **hps.model,
        )
    else:
        hps.model.version = model_version
        vq_model = SynthesizerTrnV3(
            hps.data.filter_length // 2 + 1,
            hps.train.segment_size // hps.data.hop_length,
            n_speakers=hps.data.n_speakers,
            **hps.model,
        )
    if "pretrained" not in sovits_path:
        try:
            del vq_model.enc_q
        except:
            pass
    if is_half == True:
        vq_model = vq_model.half().to(device)
    else:
        vq_model = vq_model.to(device)
    vq_model.eval()
    if if_lora_v3 == False:
        print("loading sovits_%s" % model_version, vq_model.load_state_dict(dict_s2["weight"], strict=False))
    else:
        path_sovits = path_sovits_v3 if model_version == "v3" else path_sovits_v4
        print(
            "loading sovits_%spretrained_G" % model_version,
            vq_model.load_state_dict(load_sovits_new(path_sovits)["weight"], strict=False),
        )
        lora_rank = dict_s2["lora_rank"]
        lora_config = LoraConfig(
            target_modules=["to_k", "to_q", "to_v", "to_out.0"],
            r=lora_rank,
            lora_alpha=lora_rank,
            init_lora_weights=True,
        )
        vq_model.cfm = get_peft_model(vq_model.cfm, lora_config)
        print("loading sovits_%s_lora%s" % (model_version, lora_rank))
        vq_model.load_state_dict(dict_s2["weight"], strict=False)
        vq_model.cfm = vq_model.cfm.merge_and_unload()
        # torch.save(vq_model.state_dict(),"merge_win.pth")
        vq_model.eval()

    yield (
        {"__type__": "update", "choices": list(dict_language.keys())},
        {"__type__": "update", "choices": list(dict_language.keys())},
        prompt_text_update,
        prompt_language_update,
        text_update,
        text_language_update,
        {
            "__type__": "update",
            "visible": visible_sample_steps,
            "value": 32 if model_version == "v3" else 8,
            "choices": [4, 8, 16, 32, 64, 128] if model_version == "v3" else [4, 8, 16, 32],
        },
        {"__type__": "update", "visible": visible_inp_refs},
        {"__type__": "update", "value": False, "interactive": True if model_version not in v3v4set else False},
        {"__type__": "update", "visible": True if model_version == "v3" else False},
        {"__type__": "update", "value": i18n("合成语音"), "interactive": True},
    )
    with open("./weight.json") as f:
        data = f.read()
        data = json.loads(data)
        data["SoVITS"][version] = sovits_path
    with open("./weight.json", "w") as f:
        f.write(json.dumps(data))


try:
    next(change_sovits_weights(sovits_path))
except:
    pass


def change_gpt_weights(gpt_path):
    if "!" in gpt_path or "!" in gpt_path:
        gpt_path = name2gpt_path[gpt_path]
    global hz, max_sec, t2s_model, config
    hz = 50
    dict_s1 = torch.load(gpt_path, map_location="cpu", weights_only=False)
    config = dict_s1["config"]
    max_sec = config["data"]["max_sec"]
    t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
    t2s_model.load_state_dict(dict_s1["weight"])
    if is_half == True:
        t2s_model = t2s_model.half()
    t2s_model = t2s_model.to(device)
    t2s_model.eval()
    # total = sum([param.nelement() for param in t2s_model.parameters()])
    # print("Number of parameter: %.2fM" % (total / 1e6))
    with open("./weight.json") as f:
        data = f.read()
        data = json.loads(data)
        data["GPT"][version] = gpt_path
    with open("./weight.json", "w") as f:
        f.write(json.dumps(data))


change_gpt_weights(gpt_path)
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
import torch

now_dir = os.getcwd()


def clean_hifigan_model():
    global hifigan_model
    if hifigan_model:
        hifigan_model = hifigan_model.cpu()
        hifigan_model = None
        try:
            torch.cuda.empty_cache()
        except:
            pass


def clean_bigvgan_model():
    global bigvgan_model
    if bigvgan_model:
        bigvgan_model = bigvgan_model.cpu()
        bigvgan_model = None
        try:
            torch.cuda.empty_cache()
        except:
            pass


def clean_sv_cn_model():
    global sv_cn_model
    if sv_cn_model:
        sv_cn_model.embedding_model = sv_cn_model.embedding_model.cpu()
        sv_cn_model = None
        try:
            torch.cuda.empty_cache()
        except:
            pass


def init_bigvgan():
    global bigvgan_model, hifigan_model, sv_cn_model
    from BigVGAN import bigvgan

    bigvgan_model = bigvgan.BigVGAN.from_pretrained(
        "%s/pretrained_models/models--nvidia--bigvgan_v2_24khz_100band_256x" % (now_dir,),
        use_cuda_kernel=False,
    )  # if True, RuntimeError: Ninja is required to load C++ extensions
    # remove weight norm in the model and set to eval mode
    bigvgan_model.remove_weight_norm()
    bigvgan_model = bigvgan_model.eval()
    clean_hifigan_model()
    clean_sv_cn_model()
    if is_half == True:
        bigvgan_model = bigvgan_model.half().to(device)
    else:
        bigvgan_model = bigvgan_model.to(device)


def init_hifigan():
    global hifigan_model, bigvgan_model, sv_cn_model
    hifigan_model = Generator(
        initial_channel=100,
        resblock="1",
        resblock_kernel_sizes=[3, 7, 11],
        resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
        upsample_rates=[10, 6, 2, 2, 2],
        upsample_initial_channel=512,
        upsample_kernel_sizes=[20, 12, 4, 4, 4],
        gin_channels=0,
        is_bias=True,
    )
    hifigan_model.eval()
    hifigan_model.remove_weight_norm()
    state_dict_g = torch.load(
        "%s/pretrained_models/gsv-v4-pretrained/vocoder.pth" % (now_dir,),
        map_location="cpu",
        weights_only=False,
    )
    print("loading vocoder", hifigan_model.load_state_dict(state_dict_g))
    clean_bigvgan_model()
    clean_sv_cn_model()
    if is_half == True:
        hifigan_model = hifigan_model.half().to(device)
    else:
        hifigan_model = hifigan_model.to(device)


from sv import SV


def init_sv_cn():
    global hifigan_model, bigvgan_model, sv_cn_model
    sv_cn_model = SV(device, is_half)
    clean_bigvgan_model()
    clean_hifigan_model()


bigvgan_model = hifigan_model = sv_cn_model = None
if model_version == "v3":
    init_bigvgan()
if model_version == "v4":
    init_hifigan()
if model_version in {"v2Pro", "v2ProPlus"}:
    init_sv_cn()

resample_transform_dict = {}


def resample(audio_tensor, sr0, sr1, device):
    global resample_transform_dict
    key = "%s-%s-%s" % (sr0, sr1, str(device))
    if key not in resample_transform_dict:
        resample_transform_dict[key] = torchaudio.transforms.Resample(sr0, sr1).to(device)
    return resample_transform_dict[key](audio_tensor)


def get_spepc(hps, filename, dtype, device, is_v2pro=False):
    # audio = load_audio(filename, int(hps.data.sampling_rate))

    # audio, sampling_rate = librosa.load(filename, sr=int(hps.data.sampling_rate))
    # audio = torch.FloatTensor(audio)

    sr1 = int(hps.data.sampling_rate)
    audio, sr0 = torchaudio.load(filename)
    if sr0 != sr1:
        audio = audio.to(device)
        if audio.shape[0] == 2:
            audio = audio.mean(0).unsqueeze(0)
        audio = resample(audio, sr0, sr1, device)
    else:
        audio = audio.to(device)
        if audio.shape[0] == 2:
            audio = audio.mean(0).unsqueeze(0)

    maxx = audio.abs().max()
    if maxx > 1:
        audio /= min(2, maxx)
    spec = spectrogram_torch(
        audio,
        hps.data.filter_length,
        hps.data.sampling_rate,
        hps.data.hop_length,
        hps.data.win_length,
        center=False,
    )
    spec = spec.to(dtype)
    if is_v2pro == True:
        audio = resample(audio, sr1, 16000, device).to(dtype)
    return spec, audio


def clean_text_inf(text, language, version):
    language = language.replace("all_", "")
    phones, word2ph, norm_text = clean_text(text, language, version)
    phones = cleaned_text_to_sequence(phones, version)
    return phones, word2ph, norm_text


dtype = torch.float16 if is_half == True else torch.float32


def get_bert_inf(phones, word2ph, norm_text, language):
    language = language.replace("all_", "")
    if language == "zh":
        bert = get_bert_feature(norm_text, word2ph).to(device)  # .to(dtype)
    else:
        bert = torch.zeros(
            (1024, len(phones)),
            dtype=torch.float16 if is_half == True else torch.float32,
        ).to(device)

    return bert


splits = {
    ",",
    "。",
    "?",
    "!",
    ",",
    ".",
    "?",
    "!",
    "~",
    ":",
    ":",
    "—",
    "…",
}


def get_first(text):
    pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
    text = re.split(pattern, text)[0].strip()
    return text


from text import chinese


def get_phones_and_bert(text, language, version, final=False):
    if language in {"en", "all_zh", "all_ja", "all_ko", "all_yue"}:
        formattext = text
        while "  " in formattext:
            formattext = formattext.replace("  ", " ")
        if language == "all_zh":
            if re.search(r"[A-Za-z]", formattext):
                formattext = re.sub(r"[a-z]", lambda x: x.group(0).upper(), formattext)
                formattext = chinese.mix_text_normalize(formattext)
                return get_phones_and_bert(formattext, "zh", version)
            else:
                phones, word2ph, norm_text = clean_text_inf(formattext, language, version)
                bert = get_bert_feature(norm_text, word2ph).to(device)
        elif language == "all_yue" and re.search(r"[A-Za-z]", formattext):
            formattext = re.sub(r"[a-z]", lambda x: x.group(0).upper(), formattext)
            formattext = chinese.mix_text_normalize(formattext)
            return get_phones_and_bert(formattext, "yue", version)
        else:
            phones, word2ph, norm_text = clean_text_inf(formattext, language, version)
            bert = torch.zeros(
                (1024, len(phones)),
                dtype=torch.float16 if is_half == True else torch.float32,
            ).to(device)
    elif language in {"zh", "ja", "ko", "yue", "auto", "auto_yue"}:
        textlist = []
        langlist = []
        if language == "auto":
            for tmp in LangSegmenter.getTexts(text):
                langlist.append(tmp["lang"])
                textlist.append(tmp["text"])
        elif language == "auto_yue":
            for tmp in LangSegmenter.getTexts(text):
                if tmp["lang"] == "zh":
                    tmp["lang"] = "yue"
                langlist.append(tmp["lang"])
                textlist.append(tmp["text"])
        else:
            for tmp in LangSegmenter.getTexts(text):
                if langlist:
                    if (tmp["lang"] == "en" and langlist[-1] == "en") or (tmp["lang"] != "en" and langlist[-1] != "en"):
                        textlist[-1] += tmp["text"]
                        continue
                if tmp["lang"] == "en":
                    langlist.append(tmp["lang"])
                else:
                    # 因无法区别中日韩文汉字,以用户输入为准
                    langlist.append(language)
                textlist.append(tmp["text"])
        print(textlist)
        print(langlist)
        phones_list = []
        bert_list = []
        norm_text_list = []
        for i in range(len(textlist)):
            lang = langlist[i]
            phones, word2ph, norm_text = clean_text_inf(textlist[i], lang, version)
            bert = get_bert_inf(phones, word2ph, norm_text, lang)
            phones_list.append(phones)
            norm_text_list.append(norm_text)
            bert_list.append(bert)
        bert = torch.cat(bert_list, dim=1)
        phones = sum(phones_list, [])
        norm_text = "".join(norm_text_list)

    if not final and len(phones) < 6:
        return get_phones_and_bert("." + text, language, version, final=True)

    return phones, bert.to(dtype), norm_text


from module.mel_processing import mel_spectrogram_torch, spectrogram_torch

spec_min = -12
spec_max = 2


def norm_spec(x):
    return (x - spec_min) / (spec_max - spec_min) * 2 - 1


def denorm_spec(x):
    return (x + 1) / 2 * (spec_max - spec_min) + spec_min


mel_fn = lambda x: mel_spectrogram_torch(
    x,
    **{
        "n_fft": 1024,
        "win_size": 1024,
        "hop_size": 256,
        "num_mels": 100,
        "sampling_rate": 24000,
        "fmin": 0,
        "fmax": None,
        "center": False,
    },
)
mel_fn_v4 = lambda x: mel_spectrogram_torch(
    x,
    **{
        "n_fft": 1280,
        "win_size": 1280,
        "hop_size": 320,
        "num_mels": 100,
        "sampling_rate": 32000,
        "fmin": 0,
        "fmax": None,
        "center": False,
    },
)


def merge_short_text_in_array(texts, threshold):
    if (len(texts)) < 2:
        return texts
    result = []
    text = ""
    for ele in texts:
        text += ele
        if len(text) >= threshold:
            result.append(text)
            text = ""
    if len(text) > 0:
        if len(result) == 0:
            result.append(text)
        else:
            result[len(result) - 1] += text
    return result


sr_model = None


def audio_sr(audio, sr):
    global sr_model
    if sr_model == None:
        from tools.audio_sr import AP_BWE

        try:
            sr_model = AP_BWE(device, DictToAttrRecursive)
        except FileNotFoundError:
            gr.Warning(i18n("你没有下载超分模型的参数,因此不进行超分。如想超分请先参照教程把文件下载好"))
            return audio.cpu().detach().numpy(), sr
    return sr_model(audio, sr)


##ref_wav_path+prompt_text+prompt_language+text(单个)+text_language+top_k+top_p+temperature
# cache_tokens={}#暂未实现清理机制
cache = {}


def get_tts_wav(
    ref_wav_path,
    prompt_text,
    prompt_language,
    text,
    text_language,
    how_to_cut=i18n("不切"),
    top_k=20,
    top_p=0.6,
    temperature=0.6,
    ref_free=False,
    speed=1,
    if_freeze=False,
    inp_refs=None,
    sample_steps=8,
    if_sr=False,
    pause_second=0.3,
):
    global cache
    if ref_wav_path:
        pass
    else:
        gr.Warning(i18n("请上传参考音频"))
    if text:
        pass
    else:
        gr.Warning(i18n("请填入推理文本"))
    t = []
    if prompt_text is None or len(prompt_text) == 0:
        ref_free = True
    if model_version in v3v4set:
        ref_free = False  # s2v3暂不支持ref_free
    else:
        if_sr = False
    if model_version not in {"v3", "v4", "v2Pro", "v2ProPlus"}:
        clean_bigvgan_model()
        clean_hifigan_model()
        clean_sv_cn_model()
    t0 = ttime()
    prompt_language = dict_language[prompt_language]
    text_language = dict_language[text_language]

    if not ref_free:
        prompt_text = prompt_text.strip("\n")
        if prompt_text[-1] not in splits:
            prompt_text += "。" if prompt_language != "en" else "."
        print(i18n("实际输入的参考文本:"), prompt_text)
    text = text.strip("\n")
    # if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text

    print(i18n("实际输入的目标文本:"), text)
    zero_wav = np.zeros(
        int(hps.data.sampling_rate * pause_second),
        dtype=np.float16 if is_half == True else np.float32,
    )
    zero_wav_torch = torch.from_numpy(zero_wav)
    if is_half == True:
        zero_wav_torch = zero_wav_torch.half().to(device)
    else:
        zero_wav_torch = zero_wav_torch.to(device)
    if not ref_free:
        with torch.no_grad():
            wav16k, sr = librosa.load(ref_wav_path, sr=16000)
            if wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000:
                gr.Warning(i18n("参考音频在3~10秒范围外,请更换!"))
                raise OSError(i18n("参考音频在3~10秒范围外,请更换!"))
            wav16k = torch.from_numpy(wav16k)
            if is_half == True:
                wav16k = wav16k.half().to(device)
            else:
                wav16k = wav16k.to(device)
            wav16k = torch.cat([wav16k, zero_wav_torch])
            ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2)  # .float()
            codes = vq_model.extract_latent(ssl_content)
            prompt_semantic = codes[0, 0]
            prompt = prompt_semantic.unsqueeze(0).to(device)

    t1 = ttime()
    t.append(t1 - t0)

    if how_to_cut == i18n("凑四句一切"):
        text = cut1(text)
    elif how_to_cut == i18n("凑50字一切"):
        text = cut2(text)
    elif how_to_cut == i18n("按中文句号。切"):
        text = cut3(text)
    elif how_to_cut == i18n("按英文句号.切"):
        text = cut4(text)
    elif how_to_cut == i18n("按标点符号切"):
        text = cut5(text)
    while "\n\n" in text:
        text = text.replace("\n\n", "\n")
    print(i18n("实际输入的目标文本(切句后):"), text)
    texts = text.split("\n")
    texts = process_text(texts)
    texts = merge_short_text_in_array(texts, 5)
    audio_opt = []
    ###s2v3暂不支持ref_free
    if not ref_free:
        phones1, bert1, norm_text1 = get_phones_and_bert(prompt_text, prompt_language, version)

    for i_text, text in enumerate(texts):
        # 解决输入目标文本的空行导致报错的问题
        if len(text.strip()) == 0:
            continue
        if text[-1] not in splits:
            text += "。" if text_language != "en" else "."
        print(i18n("实际输入的目标文本(每句):"), text)
        phones2, bert2, norm_text2 = get_phones_and_bert(text, text_language, version)
        print(i18n("前端处理后的文本(每句):"), norm_text2)
        if not ref_free:
            bert = torch.cat([bert1, bert2], 1)
            all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
        else:
            bert = bert2
            all_phoneme_ids = torch.LongTensor(phones2).to(device).unsqueeze(0)

        bert = bert.to(device).unsqueeze(0)
        all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)

        t2 = ttime()
        # cache_key="%s-%s-%s-%s-%s-%s-%s-%s"%(ref_wav_path,prompt_text,prompt_language,text,text_language,top_k,top_p,temperature)
        # print(cache.keys(),if_freeze)
        if i_text in cache and if_freeze == True:
            pred_semantic = cache[i_text]
        else:
            with torch.no_grad():
                pred_semantic, idx = t2s_model.model.infer_panel(
                    all_phoneme_ids,
                    all_phoneme_len,
                    None if ref_free else prompt,
                    bert,
                    # prompt_phone_len=ph_offset,
                    top_k=top_k,
                    top_p=top_p,
                    temperature=temperature,
                    early_stop_num=hz * max_sec,
                )
                pred_semantic = pred_semantic[:, -idx:].unsqueeze(0)
                cache[i_text] = pred_semantic
        t3 = ttime()
        is_v2pro = model_version in {"v2Pro", "v2ProPlus"}
        # print(23333,is_v2pro,model_version)
        ###v3不存在以下逻辑和inp_refs
        if model_version not in v3v4set:
            refers = []
            if is_v2pro:
                sv_emb = []
                if sv_cn_model == None:
                    init_sv_cn()
            if inp_refs:
                for path in inp_refs:
                    try:  #####这里加上提取sv的逻辑,要么一堆sv一堆refer,要么单个sv单个refer
                        refer, audio_tensor = get_spepc(hps, path.name, dtype, device, is_v2pro)
                        refers.append(refer)
                        if is_v2pro:
                            sv_emb.append(sv_cn_model.compute_embedding3(audio_tensor))
                    except:
                        traceback.print_exc()
            if len(refers) == 0:
                refers, audio_tensor = get_spepc(hps, ref_wav_path, dtype, device, is_v2pro)
                refers = [refers]
                if is_v2pro:
                    sv_emb = [sv_cn_model.compute_embedding3(audio_tensor)]
            if is_v2pro:
                audio = vq_model.decode(
                    pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refers, speed=speed, sv_emb=sv_emb
                )[0][0]
            else:
                audio = vq_model.decode(
                    pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refers, speed=speed
                )[0][0]
        else:
            refer, audio_tensor = get_spepc(hps, ref_wav_path, dtype, device)
            phoneme_ids0 = torch.LongTensor(phones1).to(device).unsqueeze(0)
            phoneme_ids1 = torch.LongTensor(phones2).to(device).unsqueeze(0)
            fea_ref, ge = vq_model.decode_encp(prompt.unsqueeze(0), phoneme_ids0, refer)
            ref_audio, sr = torchaudio.load(ref_wav_path)
            ref_audio = ref_audio.to(device).float()
            if ref_audio.shape[0] == 2:
                ref_audio = ref_audio.mean(0).unsqueeze(0)
            tgt_sr = 24000 if model_version == "v3" else 32000
            if sr != tgt_sr:
                ref_audio = resample(ref_audio, sr, tgt_sr, device)
            # print("ref_audio",ref_audio.abs().mean())
            mel2 = mel_fn(ref_audio) if model_version == "v3" else mel_fn_v4(ref_audio)
            mel2 = norm_spec(mel2)
            T_min = min(mel2.shape[2], fea_ref.shape[2])
            mel2 = mel2[:, :, :T_min]
            fea_ref = fea_ref[:, :, :T_min]
            Tref = 468 if model_version == "v3" else 500
            Tchunk = 934 if model_version == "v3" else 1000
            if T_min > Tref:
                mel2 = mel2[:, :, -Tref:]
                fea_ref = fea_ref[:, :, -Tref:]
                T_min = Tref
            chunk_len = Tchunk - T_min
            mel2 = mel2.to(dtype)
            fea_todo, ge = vq_model.decode_encp(pred_semantic, phoneme_ids1, refer, ge, speed)
            cfm_resss = []
            idx = 0
            while 1:
                fea_todo_chunk = fea_todo[:, :, idx : idx + chunk_len]
                if fea_todo_chunk.shape[-1] == 0:
                    break
                idx += chunk_len
                fea = torch.cat([fea_ref, fea_todo_chunk], 2).transpose(2, 1)
                cfm_res = vq_model.cfm.inference(
                    fea, torch.LongTensor([fea.size(1)]).to(fea.device), mel2, sample_steps, inference_cfg_rate=0
                )
                cfm_res = cfm_res[:, :, mel2.shape[2] :]
                mel2 = cfm_res[:, :, -T_min:]
                fea_ref = fea_todo_chunk[:, :, -T_min:]
                cfm_resss.append(cfm_res)
            cfm_res = torch.cat(cfm_resss, 2)
            cfm_res = denorm_spec(cfm_res)
            if model_version == "v3":
                if bigvgan_model == None:
                    init_bigvgan()
            else:  # v4
                if hifigan_model == None:
                    init_hifigan()
            vocoder_model = bigvgan_model if model_version == "v3" else hifigan_model
            with torch.inference_mode():
                wav_gen = vocoder_model(cfm_res)
                audio = wav_gen[0][0]  # .cpu().detach().numpy()
        max_audio = torch.abs(audio).max()  # 简单防止16bit爆音
        if max_audio > 1:
            audio = audio / max_audio
        audio_opt.append(audio)
        audio_opt.append(zero_wav_torch)  # zero_wav
        t4 = ttime()
        t.extend([t2 - t1, t3 - t2, t4 - t3])
        t1 = ttime()
    print("%.3f\t%.3f\t%.3f\t%.3f" % (t[0], sum(t[1::3]), sum(t[2::3]), sum(t[3::3])))
    audio_opt = torch.cat(audio_opt, 0)  # np.concatenate
    if model_version in {"v1", "v2", "v2Pro", "v2ProPlus"}:
        opt_sr = 32000
    elif model_version == "v3":
        opt_sr = 24000
    else:
        opt_sr = 48000  # v4
    if if_sr == True and opt_sr == 24000:
        print(i18n("音频超分中"))
        audio_opt, opt_sr = audio_sr(audio_opt.unsqueeze(0), opt_sr)
        max_audio = np.abs(audio_opt).max()
        if max_audio > 1:
            audio_opt /= max_audio
    else:
        audio_opt = audio_opt.cpu().detach().numpy()
    yield opt_sr, (audio_opt * 32767).astype(np.int16)


def split(todo_text):
    todo_text = todo_text.replace("……", "。").replace("——", ",")
    if todo_text[-1] not in splits:
        todo_text += "。"
    i_split_head = i_split_tail = 0
    len_text = len(todo_text)
    todo_texts = []
    while 1:
        if i_split_head >= len_text:
            break  # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
        if todo_text[i_split_head] in splits:
            i_split_head += 1
            todo_texts.append(todo_text[i_split_tail:i_split_head])
            i_split_tail = i_split_head
        else:
            i_split_head += 1
    return todo_texts


def cut1(inp):
    inp = inp.strip("\n")
    inps = split(inp)
    split_idx = list(range(0, len(inps), 4))
    split_idx[-1] = None
    if len(split_idx) > 1:
        opts = []
        for idx in range(len(split_idx) - 1):
            opts.append("".join(inps[split_idx[idx] : split_idx[idx + 1]]))
    else:
        opts = [inp]
    opts = [item for item in opts if not set(item).issubset(punctuation)]
    return "\n".join(opts)


def cut2(inp):
    inp = inp.strip("\n")
    inps = split(inp)
    if len(inps) < 2:
        return inp
    opts = []
    summ = 0
    tmp_str = ""
    for i in range(len(inps)):
        summ += len(inps[i])
        tmp_str += inps[i]
        if summ > 50:
            summ = 0
            opts.append(tmp_str)
            tmp_str = ""
    if tmp_str != "":
        opts.append(tmp_str)
    # print(opts)
    if len(opts) > 1 and len(opts[-1]) < 50:  ##如果最后一个太短了,和前一个合一起
        opts[-2] = opts[-2] + opts[-1]
        opts = opts[:-1]
    opts = [item for item in opts if not set(item).issubset(punctuation)]
    return "\n".join(opts)


def cut3(inp):
    inp = inp.strip("\n")
    opts = ["%s" % item for item in inp.strip("。").split("。")]
    opts = [item for item in opts if not set(item).issubset(punctuation)]
    return "\n".join(opts)


def cut4(inp):
    inp = inp.strip("\n")
    opts = re.split(r"(?<!\d)\.(?!\d)", inp.strip("."))
    opts = [item for item in opts if not set(item).issubset(punctuation)]
    return "\n".join(opts)


# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/inference_webui.py
def cut5(inp):
    inp = inp.strip("\n")
    punds = {",", ".", ";", "?", "!", "、", ",", "。", "?", "!", ";", ":", "…"}
    mergeitems = []
    items = []

    for i, char in enumerate(inp):
        if char in punds:
            if char == "." and i > 0 and i < len(inp) - 1 and inp[i - 1].isdigit() and inp[i + 1].isdigit():
                items.append(char)
            else:
                items.append(char)
                mergeitems.append("".join(items))
                items = []
        else:
            items.append(char)

    if items:
        mergeitems.append("".join(items))

    opt = [item for item in mergeitems if not set(item).issubset(punds)]
    return "\n".join(opt)


def custom_sort_key(s):
    # 使用正则表达式提取字符串中的数字部分和非数字部分
    parts = re.split("(\d+)", s)
    # 将数字部分转换为整数,非数字部分保持不变
    parts = [int(part) if part.isdigit() else part for part in parts]
    return parts


def process_text(texts):
    _text = []
    if all(text in [None, " ", "\n", ""] for text in texts):
        raise ValueError(i18n("请输入有效文本"))
    for text in texts:
        if text in [None, " ", ""]:
            pass
        else:
            _text.append(text)
    return _text


def html_center(text, label="p"):
    return f"""<div style="text-align: center; margin: 100; padding: 50;">
                <{label} style="margin: 0; padding: 0;">{text}</{label}>
                </div>"""


def html_left(text, label="p"):
    return f"""<div style="text-align: left; margin: 0; padding: 0;">
                <{label} style="margin: 0; padding: 0;">{text}</{label}>
                </div>"""


with gr.Blocks(title="GPT-SoVITS WebUI", analytics_enabled=False, js=js, css=css) as app:
    gr.HTML(
        top_html.format(
            i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责.")
            + i18n("如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录LICENSE.")
        ),
        elem_classes="markdown",
    )
    with gr.Group():
        gr.Markdown(html_center(i18n("模型切换"), "h3"))
        with gr.Row():
            GPT_dropdown = gr.Dropdown(
                label=i18n("GPT模型列表"),
                choices=sorted(GPT_names, key=custom_sort_key),
                value=gpt_path,
                interactive=True,
                scale=14,
            )
            SoVITS_dropdown = gr.Dropdown(
                label=i18n("SoVITS模型列表"),
                choices=sorted(SoVITS_names, key=custom_sort_key),
                value=sovits_path,
                interactive=True,
                scale=14,
            )
            refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary", scale=14)
            refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown])
        gr.Markdown(html_center(i18n("*请上传并填写参考信息"), "h3"))
        with gr.Row():
            inp_ref = gr.Audio(label=i18n("请上传3~10秒内参考音频,超过会报错!"), type="filepath", scale=13)
            with gr.Column(scale=13):
                ref_text_free = gr.Checkbox(
                    label=i18n("开启无参考文本模式。不填参考文本亦相当于开启。")
                    + i18n("v3暂不支持该模式,使用了会报错。"),
                    value=False,
                    interactive=True if model_version not in v3v4set else False,
                    show_label=True,
                    scale=1,
                )
                gr.Markdown(
                    html_left(
                        i18n("使用无参考文本模式时建议使用微调的GPT")
                        + "<br>"
                        + i18n("听不清参考音频说的啥(不晓得写啥)可以开。开启后无视填写的参考文本。")
                    )
                )
                prompt_text = gr.Textbox(label=i18n("参考音频的文本"), value="", lines=5, max_lines=5, scale=1)
            with gr.Column(scale=14):
                prompt_language = gr.Dropdown(
                    label=i18n("参考音频的语种"),
                    choices=list(dict_language.keys()),
                    value=i18n("中文"),
                )
                inp_refs = (
                    gr.File(
                        label=i18n(
                            "可选项:通过拖拽多个文件上传多个参考音频(建议同性),平均融合他们的音色。如不填写此项,音色由左侧单个参考音频控制。如是微调模型,建议参考音频全部在微调训练集音色内,底模不用管。"
                        ),
                        file_count="multiple",
                    )
                    if model_version not in v3v4set
                    else gr.File(
                        label=i18n(
                            "可选项:通过拖拽多个文件上传多个参考音频(建议同性),平均融合他们的音色。如不填写此项,音色由左侧单个参考音频控制。如是微调模型,建议参考音频全部在微调训练集音色内,底模不用管。"
                        ),
                        file_count="multiple",
                        visible=False,
                    )
                )
                sample_steps = (
                    gr.Radio(
                        label=i18n("采样步数,如果觉得电,提高试试,如果觉得慢,降低试试"),
                        value=32 if model_version == "v3" else 8,
                        choices=[4, 8, 16, 32, 64, 128] if model_version == "v3" else [4, 8, 16, 32],
                        visible=True,
                    )
                    if model_version in v3v4set
                    else gr.Radio(
                        label=i18n("采样步数,如果觉得电,提高试试,如果觉得慢,降低试试"),
                        choices=[4, 8, 16, 32, 64, 128] if model_version == "v3" else [4, 8, 16, 32],
                        visible=False,
                        value=32 if model_version == "v3" else 8,
                    )
                )
                if_sr_Checkbox = gr.Checkbox(
                    label=i18n("v3输出如果觉得闷可以试试开超分"),
                    value=False,
                    interactive=True,
                    show_label=True,
                    visible=False if model_version != "v3" else True,
                )
        gr.Markdown(html_center(i18n("*请填写需要合成的目标文本和语种模式"), "h3"))
        with gr.Row():
            with gr.Column(scale=13):
                text = gr.Textbox(label=i18n("需要合成的文本"), value="", lines=26, max_lines=26)
            with gr.Column(scale=7):
                text_language = gr.Dropdown(
                    label=i18n("需要合成的语种") + i18n(".限制范围越小判别效果越好。"),
                    choices=list(dict_language.keys()),
                    value=i18n("中文"),
                    scale=1,
                )
                how_to_cut = gr.Dropdown(
                    label=i18n("怎么切"),
                    choices=[
                        i18n("不切"),
                        i18n("凑四句一切"),
                        i18n("凑50字一切"),
                        i18n("按中文句号。切"),
                        i18n("按英文句号.切"),
                        i18n("按标点符号切"),
                    ],
                    value=i18n("凑四句一切"),
                    interactive=True,
                    scale=1,
                )
                gr.Markdown(value=html_center(i18n("语速调整,高为更快")))
                if_freeze = gr.Checkbox(
                    label=i18n("是否直接对上次合成结果调整语速和音色。防止随机性。"),
                    value=False,
                    interactive=True,
                    show_label=True,
                    scale=1,
                )
                with gr.Row():
                    speed = gr.Slider(
                        minimum=0.6, maximum=1.65, step=0.05, label=i18n("语速"), value=1, interactive=True, scale=1
                    )
                    pause_second_slider = gr.Slider(
                        minimum=0.1,
                        maximum=0.5,
                        step=0.01,
                        label=i18n("句间停顿秒数"),
                        value=0.3,
                        interactive=True,
                        scale=1,
                    )
                gr.Markdown(html_center(i18n("GPT采样参数(无参考文本时不要太低。不懂就用默认):")))
                top_k = gr.Slider(
                    minimum=1, maximum=100, step=1, label=i18n("top_k"), value=15, interactive=True, scale=1
                )
                top_p = gr.Slider(
                    minimum=0, maximum=1, step=0.05, label=i18n("top_p"), value=1, interactive=True, scale=1
                )
                temperature = gr.Slider(
                    minimum=0, maximum=1, step=0.05, label=i18n("temperature"), value=1, interactive=True, scale=1
                )
            # with gr.Column():
            #     gr.Markdown(value=i18n("手工调整音素。当音素框不为空时使用手工音素输入推理,无视目标文本框。"))
            #     phoneme=gr.Textbox(label=i18n("音素框"), value="")
            #     get_phoneme_button = gr.Button(i18n("目标文本转音素"), variant="primary")
        with gr.Row():
            inference_button = gr.Button(value=i18n("合成语音"), variant="primary", size="lg", scale=25)
            output = gr.Audio(label=i18n("输出的语音"), scale=14)

        inference_button.click(
            get_tts_wav,
            [
                inp_ref,
                prompt_text,
                prompt_language,
                text,
                text_language,
                how_to_cut,
                top_k,
                top_p,
                temperature,
                ref_text_free,
                speed,
                if_freeze,
                inp_refs,
                sample_steps,
                if_sr_Checkbox,
                pause_second_slider,
            ],
            [output],
        )
        SoVITS_dropdown.change(
            change_sovits_weights,
            [SoVITS_dropdown, prompt_language, text_language],
            [
                prompt_language,
                text_language,
                prompt_text,
                prompt_language,
                text,
                text_language,
                sample_steps,
                inp_refs,
                ref_text_free,
                if_sr_Checkbox,
                inference_button,
            ],
        )
        GPT_dropdown.change(change_gpt_weights, [GPT_dropdown], [])

        # gr.Markdown(value=i18n("文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。"))
        # with gr.Row():
        #     text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"), value="")
        #     button1 = gr.Button(i18n("凑四句一切"), variant="primary")
        #     button2 = gr.Button(i18n("凑50字一切"), variant="primary")
        #     button3 = gr.Button(i18n("按中文句号。切"), variant="primary")
        #     button4 = gr.Button(i18n("按英文句号.切"), variant="primary")
        #     button5 = gr.Button(i18n("按标点符号切"), variant="primary")
        #     text_opt = gr.Textbox(label=i18n("切分后文本"), value="")
        #     button1.click(cut1, [text_inp], [text_opt])
        #     button2.click(cut2, [text_inp], [text_opt])
        #     button3.click(cut3, [text_inp], [text_opt])
        #     button4.click(cut4, [text_inp], [text_opt])
        #     button5.click(cut5, [text_inp], [text_opt])
        # gr.Markdown(html_center(i18n("后续将支持转音素、手工修改音素、语音合成分步执行。")))

if __name__ == "__main__":
    app.queue().launch(  # concurrency_count=511, max_size=1022
        server_name="0.0.0.0",
        inbrowser=False,
        share=is_share,
        server_port=infer_ttswebui,
        # quiet=True,
    )