File size: 3,009 Bytes
3a60a51
7272bf3
 
 
1bcb7e6
dc8253a
 
 
7272bf3
dc8253a
 
7272bf3
 
 
 
 
f1725e1
7272bf3
f1725e1
7272bf3
dc8253a
1bcb7e6
dc8253a
7272bf3
dc8253a
 
 
7272bf3
 
dc8253a
7272bf3
 
dc8253a
 
7272bf3
1bcb7e6
7272bf3
 
 
 
 
 
 
 
 
 
dc8253a
 
 
 
 
7272bf3
 
 
 
 
dc8253a
7272bf3
dc8253a
 
 
 
 
 
1bcb7e6
dc8253a
 
 
 
 
7272bf3
 
dc8253a
7272bf3
 
 
dc8253a
7272bf3
dc8253a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import torch
import cv2
import gradio as gr
import numpy as np
import requests
from PIL import Image
from io import BytesIO
from transformers import OwlViTProcessor, OwlViTForObjectDetection


# Use GPU if available
if torch.cuda.is_available():
    device = torch.device("cuda")
else:
    device = torch.device("cpu")

model = OwlViTForObjectDetection.from_pretrained("google/owlvit-large-patch14").to(device)
model.eval()
processor = OwlViTProcessor.from_pretrained("google/owlvit-large-patch14")


def query_image(img_url, text_queries, score_threshold):
    text_queries = text_queries.split(",")

    response = requests.get(img_url)
    img = Image.open(BytesIO(response.content))
    img = np.array(img)

    target_sizes = torch.Tensor([img.shape[:2]])
    inputs = processor(text=text_queries, images=img, return_tensors="pt").to(device)

    with torch.no_grad():
        outputs = model(**inputs)

    outputs.logits = outputs.logits.cpu()
    outputs.pred_boxes = outputs.pred_boxes.cpu()
    results = processor.post_process(outputs=outputs, target_sizes=target_sizes)
    boxes, scores, labels = results[0]["boxes"], results[0]["scores"], results[0]["labels"]

    font = cv2.FONT_HERSHEY_SIMPLEX

    for box, score, label in zip(boxes, scores, labels):
        box = [int(i) for i in box.tolist()]

        if score >= score_threshold:
            img = cv2.rectangle(img, box[:2], box[2:], (255,0,0), 5)
            if box[3] + 25 > 768:
                y = box[3] - 10
            else:
                y = box[3] + 25

            img = cv2.putText(
                img, text_queries[label], (box[0], y), font, 1, (255,0,0), 2, cv2.LINE_AA
            )
    return img


description = """
Gradio demo for <a href="https://huggingface.co/docs/transformers/main/en/model_doc/owlvit">OWL-ViT</a>,
introduced in <a href="https://arxiv.org/abs/2205.06230">Simple Open-Vocabulary Object Detection
with Vision Transformers</a>.
\n\nYou can use OWL-ViT to query images with text descriptions of any object.
To use it, simply input the URL of an image and enter comma separated text descriptions of objects you want to query the image for. You
can also use the score threshold slider to set a threshold to filter out low probability predictions.

\n\nOWL-ViT is trained on text templates,
hence you can get better predictions by querying the image with text templates used in training the original model: *"photo of a star-spangled banner"*,
*"image of a shoe"*. Refer to the <a href="https://arxiv.org/abs/2103.00020">CLIP</a> paper to see the full list of text templates used to augment the training data.
\n\n<a href="https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/zeroshot_object_detection_with_owlvit.ipynb">Colab demo</a>
"""
demo = gr.Interface(
    query_image, 
    inputs=["text", "text", gr.Slider(0, 1, value=0.1)],
    outputs="image",
    title="Zero-Shot Object Detection with OWL-ViT",
    description=description,
    examples=[],
)
demo.launch()