Spaces:
Build error
Build error
File size: 8,296 Bytes
ecc7fff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
# ------------------------------------------------------------------------------------
# Minimal DALL-E
# Copyright (c) 2021 KakaoBrain. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------------------
import os
import torch
import logging
import torch.nn as nn
import pytorch_lightning as pl
from typing import Optional, Tuple
from omegaconf import OmegaConf
from torch.cuda.amp import autocast
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.nn import functional as F
from .stage1.vqgan import VQGAN
from .stage2.transformer import Transformer1d, iGPT
from .. import utils
from ..utils.config import get_base_config
from ..utils.sampling import sampling, sampling_igpt
from .tokenizer import build_tokenizer
_MODELS = {
'minDALL-E/1.3B': 'https://arena.kakaocdn.net/brainrepo/models/minDALL-E/57b008f02ceaa02b779c8b7463143315/1.3B.tar.gz'
}
class Dalle(nn.Module):
def __init__(self,
config: OmegaConf) -> None:
super().__init__()
self.tokenizer = None
self.stage1 = VQGAN(n_embed=config.stage1.n_embed,
embed_dim=config.stage1.embed_dim,
hparams=config.stage1.hparams)
self.stage2 = Transformer1d(vocab_size_txt=config.stage2.vocab_size_txt,
vocab_size_img=config.stage2.vocab_size_img,
hparams=config.stage2.hparams)
self.config_stage1 = config.stage1
self.config_stage2 = config.stage2
self.config_dataset = config.dataset
@classmethod
def from_pretrained(cls,
path: str) -> nn.Module:
config_base = get_base_config()
config_new = OmegaConf.load('config.yaml')
config_update = OmegaConf.merge(config_base, config_new)
model = cls(config_update)
model.tokenizer = build_tokenizer('tokenizer',
context_length=model.config_dataset.context_length,
lowercase=True,
dropout=None)
return model
@torch.no_grad()
def sampling(self,
prompt: str,
top_k: int = 256,
top_p: Optional[float] = None,
softmax_temperature: float = 1.0,
num_candidates: int = 96,
device: str = 'cuda:0',
use_fp16: bool = True) -> torch.FloatTensor:
self.stage1.eval()
self.stage2.eval()
tokens = self.tokenizer.encode(prompt)
tokens = torch.LongTensor(tokens.ids)
tokens = torch.repeat_interleave(tokens.unsqueeze(0), num_candidates, dim=0)
# Check if the encoding works as intended
# print(self.tokenizer.decode_batch(tokens.tolist(), skip_special_tokens=True)[0])
tokens = tokens.to(device)
codes = sampling(self.stage2,
tokens,
top_k=top_k,
top_p=top_p,
softmax_temperature=softmax_temperature,
use_fp16=use_fp16)
codes = codes.view(num_candidates, 16, 16) # [B, 16, 16]
pixels = torch.clamp(self.stage1.decode_code(codes) * 0.5 + 0.5, 0, 1) # [B, 256, 256]
return pixels
class ImageGPT(pl.LightningModule):
def __init__(self,
config: OmegaConf) -> None:
super().__init__()
self.stage1 = VQGAN(n_embed=config.stage1.n_embed,
embed_dim=config.stage1.embed_dim,
hparams=config.stage1.hparams)
self.stage2 = iGPT(vocab_size_img=config.stage2.vocab_size_img,
use_cls_cond=config.stage2.use_cls_cond,
hparams=config.stage2.hparams)
self.config = config
self.use_cls_cond = config.stage2.use_cls_cond
# make the parameters in stage 1 not trainable
self.stage1.eval()
for p in self.stage1.parameters():
p.requires_grad = False
@classmethod
def from_pretrained(cls,
path_upstream: str,
path_downstream: str) -> Tuple[nn.Module, OmegaConf]:
config_base = get_base_config(use_default=False)
config_down = OmegaConf.load(path_downstream)
config_down = OmegaConf.merge(config_base, config_down)
model = cls(config_down)
model.stage1.from_ckpt(os.path.join(path_upstream, 'stage1_last.ckpt'), strict=True)
model.stage2.from_ckpt(os.path.join(path_upstream, 'stage2_last.ckpt'), strict=False)
return model, config_down
def sample(self,
cls_idx: Optional[int] = None,
top_k: int = 256,
top_p: Optional[float] = None,
softmax_temperature: float = 1.0,
num_candidates: int = 16,
device: str = 'cuda:0',
use_fp16: bool = True,
is_tqdm: bool = True) -> torch.FloatTensor:
self.stage1.eval()
self.stage2.eval()
if cls_idx is None:
sos = self.stage2.sos.repeat(num_candidates, 1, 1)
else:
sos = torch.LongTensor([cls_idx]).to(device=device)
sos = sos.repeat(num_candidates)
sos = self.stage2.sos(sos).unsqueeze(1)
codes = sampling_igpt(self.stage2,
sos=sos,
top_k=top_k,
top_p=top_p,
softmax_temperature=softmax_temperature,
use_fp16=use_fp16,
is_tqdm=is_tqdm)
codes = codes.view(num_candidates, 16, 16) # [B, 16, 16]
pixels = torch.clamp(self.stage1.decode_code(codes) * 0.5 + 0.5, 0, 1) # [B, 256, 256]
return pixels
def forward(self,
images: torch.FloatTensor,
labels: Optional[torch.LongTensor] = None) -> torch.FloatTensor:
B, C, H, W = images.shape
with torch.no_grad():
with autocast(enabled=False):
codes = self.stage1.get_codes(images).detach()
logits = self.stage2(codes, labels)
return logits, codes
def training_step(self, batch, batch_idx):
images, labels = batch
logits, codes = self(images, labels=labels if self.use_cls_cond else None)
loss = F.cross_entropy(logits.view(-1, logits.shape[-1]), codes.view(-1))
self.log("train/loss", loss, on_step=True, on_epoch=True, prog_bar=False, logger=True)
return loss
def validation_step(self, batch, batch_idx):
images, labels = batch
logits, codes = self(images, labels=labels if self.use_cls_cond else None)
loss = F.cross_entropy(logits.view(-1, logits.shape[-1]), codes.view(-1))
self.log("val/loss", loss, on_step=False, on_epoch=True, prog_bar=False, logger=True)
return loss
def configure_optimizers(self):
assert self.config.optimizer.opt_type == 'adamW'
assert self.config.optimizer.sched_type == 'cosine'
opt = torch.optim.AdamW(self.parameters(),
lr=self.config.optimizer.base_lr,
betas=self.config.optimizer.betas,
weight_decay=self.config.optimizer.weight_decay)
sched = CosineAnnealingLR(opt,
T_max=self.config.optimizer.max_steps,
eta_min=self.config.optimizer.min_lr)
sched = {
'scheduler': sched,
'name': 'cosine'
}
return [opt], [sched]
def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx, optimizer_closure,
on_tpu=False, using_native_amp=False, using_lbfgs=False):
optimizer.step(closure=optimizer_closure)
self.lr_schedulers().step()
self.log("lr", self.lr_schedulers().get_last_lr()[0], on_step=True, on_epoch=False, prog_bar=True, logger=True)
def on_epoch_start(self):
self.stage1.eval()
|