File size: 8,296 Bytes
ecc7fff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# ------------------------------------------------------------------------------------
# Minimal DALL-E
# Copyright (c) 2021 KakaoBrain. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------------------

import os
import torch
import logging
import torch.nn as nn
import pytorch_lightning as pl
from typing import Optional, Tuple
from omegaconf import OmegaConf
from torch.cuda.amp import autocast
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.nn import functional as F
from .stage1.vqgan import VQGAN
from .stage2.transformer import Transformer1d, iGPT
from .. import utils
from ..utils.config import get_base_config
from ..utils.sampling import sampling, sampling_igpt
from .tokenizer import build_tokenizer

_MODELS = {
    'minDALL-E/1.3B': 'https://arena.kakaocdn.net/brainrepo/models/minDALL-E/57b008f02ceaa02b779c8b7463143315/1.3B.tar.gz'
}


class Dalle(nn.Module):
    def __init__(self,
                 config: OmegaConf) -> None:
        super().__init__()
        self.tokenizer = None
        self.stage1 = VQGAN(n_embed=config.stage1.n_embed,
                            embed_dim=config.stage1.embed_dim,
                            hparams=config.stage1.hparams)
        self.stage2 = Transformer1d(vocab_size_txt=config.stage2.vocab_size_txt,
                                    vocab_size_img=config.stage2.vocab_size_img,
                                    hparams=config.stage2.hparams)
        self.config_stage1 = config.stage1
        self.config_stage2 = config.stage2
        self.config_dataset = config.dataset

    @classmethod
    def from_pretrained(cls,
                        path: str) -> nn.Module:
        config_base = get_base_config()
        config_new = OmegaConf.load('config.yaml')
        config_update = OmegaConf.merge(config_base, config_new)

        model = cls(config_update)
        model.tokenizer = build_tokenizer('tokenizer',
                                          context_length=model.config_dataset.context_length,
                                          lowercase=True,
                                          dropout=None)
        return model

    @torch.no_grad()
    def sampling(self,
                 prompt: str,
                 top_k: int = 256,
                 top_p: Optional[float] = None,
                 softmax_temperature: float = 1.0,
                 num_candidates: int = 96,
                 device: str = 'cuda:0',
                 use_fp16: bool = True) -> torch.FloatTensor:
        self.stage1.eval()
        self.stage2.eval()

        tokens = self.tokenizer.encode(prompt)
        tokens = torch.LongTensor(tokens.ids)
        tokens = torch.repeat_interleave(tokens.unsqueeze(0), num_candidates, dim=0)

        # Check if the encoding works as intended
        # print(self.tokenizer.decode_batch(tokens.tolist(), skip_special_tokens=True)[0])

        tokens = tokens.to(device)
        codes = sampling(self.stage2,
                         tokens,
                         top_k=top_k,
                         top_p=top_p,
                         softmax_temperature=softmax_temperature,
                         use_fp16=use_fp16)
        codes = codes.view(num_candidates, 16, 16)  # [B, 16, 16]
        pixels = torch.clamp(self.stage1.decode_code(codes) * 0.5 + 0.5, 0, 1)  # [B, 256, 256]
        return pixels


class ImageGPT(pl.LightningModule):
    def __init__(self,
                 config: OmegaConf) -> None:
        super().__init__()
        self.stage1 = VQGAN(n_embed=config.stage1.n_embed,
                            embed_dim=config.stage1.embed_dim,
                            hparams=config.stage1.hparams)
        self.stage2 = iGPT(vocab_size_img=config.stage2.vocab_size_img,
                           use_cls_cond=config.stage2.use_cls_cond,
                           hparams=config.stage2.hparams)
        self.config = config
        self.use_cls_cond = config.stage2.use_cls_cond

        # make the parameters in stage 1 not trainable
        self.stage1.eval()
        for p in self.stage1.parameters():
            p.requires_grad = False

    @classmethod
    def from_pretrained(cls,
                        path_upstream: str,
                        path_downstream: str) -> Tuple[nn.Module, OmegaConf]:
        config_base = get_base_config(use_default=False)
        config_down = OmegaConf.load(path_downstream)
        config_down = OmegaConf.merge(config_base, config_down)

        model = cls(config_down)
        model.stage1.from_ckpt(os.path.join(path_upstream, 'stage1_last.ckpt'), strict=True)
        model.stage2.from_ckpt(os.path.join(path_upstream, 'stage2_last.ckpt'), strict=False)
        return model, config_down

    def sample(self,
               cls_idx: Optional[int] = None,
               top_k: int = 256,
               top_p: Optional[float] = None,
               softmax_temperature: float = 1.0,
               num_candidates: int = 16,
               device: str = 'cuda:0',
               use_fp16: bool = True,
               is_tqdm: bool = True) -> torch.FloatTensor:
        self.stage1.eval()
        self.stage2.eval()

        if cls_idx is None:
            sos = self.stage2.sos.repeat(num_candidates, 1, 1)
        else:
            sos = torch.LongTensor([cls_idx]).to(device=device)
            sos = sos.repeat(num_candidates)
            sos = self.stage2.sos(sos).unsqueeze(1)

        codes = sampling_igpt(self.stage2,
                              sos=sos,
                              top_k=top_k,
                              top_p=top_p,
                              softmax_temperature=softmax_temperature,
                              use_fp16=use_fp16,
                              is_tqdm=is_tqdm)
        codes = codes.view(num_candidates, 16, 16)  # [B, 16, 16]
        pixels = torch.clamp(self.stage1.decode_code(codes) * 0.5 + 0.5, 0, 1)  # [B, 256, 256]
        return pixels

    def forward(self,
                images: torch.FloatTensor,
                labels: Optional[torch.LongTensor] = None) -> torch.FloatTensor:
        B, C, H, W = images.shape
        with torch.no_grad():
            with autocast(enabled=False):
                codes = self.stage1.get_codes(images).detach()
        logits = self.stage2(codes, labels)
        return logits, codes

    def training_step(self, batch, batch_idx):
        images, labels = batch
        logits, codes = self(images, labels=labels if self.use_cls_cond else None)
        loss = F.cross_entropy(logits.view(-1, logits.shape[-1]), codes.view(-1))
        self.log("train/loss", loss, on_step=True, on_epoch=True, prog_bar=False, logger=True)
        return loss

    def validation_step(self, batch, batch_idx):
        images, labels = batch
        logits, codes = self(images, labels=labels if self.use_cls_cond else None)
        loss = F.cross_entropy(logits.view(-1, logits.shape[-1]), codes.view(-1))
        self.log("val/loss", loss, on_step=False, on_epoch=True, prog_bar=False, logger=True)
        return loss

    def configure_optimizers(self):
        assert self.config.optimizer.opt_type == 'adamW'
        assert self.config.optimizer.sched_type == 'cosine'

        opt = torch.optim.AdamW(self.parameters(),
                                lr=self.config.optimizer.base_lr,
                                betas=self.config.optimizer.betas,
                                weight_decay=self.config.optimizer.weight_decay)
        sched = CosineAnnealingLR(opt,
                                  T_max=self.config.optimizer.max_steps,
                                  eta_min=self.config.optimizer.min_lr)
        sched = {
            'scheduler': sched,
            'name': 'cosine'
        }
        return [opt], [sched]

    def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx, optimizer_closure,
                       on_tpu=False, using_native_amp=False, using_lbfgs=False):
        optimizer.step(closure=optimizer_closure)
        self.lr_schedulers().step()
        self.log("lr", self.lr_schedulers().get_last_lr()[0], on_step=True, on_epoch=False, prog_bar=True, logger=True)

    def on_epoch_start(self):
        self.stage1.eval()