File size: 21,572 Bytes
879cbd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a949ac
 
 
 
 
 
 
 
879cbd2
 
 
 
 
 
 
 
 
 
0a949ac
c864f13
879cbd2
 
28fb579
 
 
 
 
 
 
 
 
 
 
 
 
879cbd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c864f13
 
879cbd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0a949ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb8ecd4
0a949ac
 
 
 
 
 
 
 
 
eb8ecd4
 
 
 
0a949ac
eb8ecd4
 
0a949ac
 
 
eb8ecd4
0a949ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c864f13
0a949ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
879cbd2
c864f13
 
 
 
 
 
879cbd2
 
 
c864f13
879cbd2
 
 
 
c864f13
879cbd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c864f13
879cbd2
 
 
 
 
 
 
c864f13
879cbd2
 
 
0a949ac
 
 
c864f13
 
 
 
879cbd2
0a949ac
d6e9504
0a949ac
879cbd2
 
 
 
 
 
 
 
 
 
 
 
ccbc190
 
 
c864f13
 
 
 
 
879cbd2
 
0a949ac
 
ccbc190
879cbd2
0a949ac
879cbd2
ccbc190
879cbd2
0a949ac
879cbd2
 
0a949ac
879cbd2
 
0a949ac
879cbd2
ccbc190
879cbd2
0a949ac
879cbd2
 
 
 
 
 
 
 
 
 
 
 
0a949ac
879cbd2
0a949ac
 
 
 
 
dc23363
0a949ac
dc23363
0a949ac
9bb2f48
0a949ac
 
 
 
 
 
 
 
 
 
ccbc190
0a949ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
# flake8: noqa: E402
import logging
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)

logging.basicConfig(
    level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
)

logger = logging.getLogger(__name__)
import datetime
import numpy as np
import torch
from ebooklib import epub
import PyPDF2
from PyPDF2 import PdfReader
import zipfile
import shutil
import sys, os
import json
from bs4 import BeautifulSoup
import argparse
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
import gradio as gr
import webbrowser
import re
from scipy.io.wavfile import write
from datetime import datetime
net_g = None
BandList = {
    
        "PoppinParty":["香澄","有咲","たえ","りみ","沙綾"],
        "Afterglow":["蘭","モカ","ひまり","巴","つぐみ"],
        "HelloHappyWorld":["こころ","美咲","薫","花音","はぐみ"],
        "PastelPalettes":["彩","日菜","千聖","イヴ","麻弥"],
        "Roselia":["友希那","紗夜","リサ","燐子","あこ"],
        "RaiseASuilen":["レイヤ","ロック","ますき","チュチュ","パレオ"],
        "Morfonica":["ましろ","瑠唯","つくし","七深","透子"],
        "MyGo&AveMujica(Part)":["燈","愛音","そよ","立希","楽奈","祥子","睦","海鈴"],
        "圣翔音乐学园":["華戀","光","香子","雙葉","真晝","純那","克洛迪娜","真矢","奈奈"],
        "凛明馆女子学校":["珠緒","壘","文","悠悠子","一愛"],
        "弗隆提亚艺术学校":["艾露","艾露露","菈樂菲","司","靜羽"],
        "西克菲尔特音乐学院":["晶","未知留","八千代","栞","美帆"]
}

if sys.platform == "darwin" and torch.backends.mps.is_available():
    device = "mps"
    os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
else:
    device = "cuda"

def is_japanese(string):
        for ch in string:
            if ord(ch) > 0x3040 and ord(ch) < 0x30FF:
                return True
        return False

def extrac(text):
    text = re.sub("<[^>]*>","",text)
    result_list = re.split(r'\n', text)
    final_list = []
    for i in result_list:
        i = i.replace('\n','').replace(' ','')
        #Current length of single sentence: 20 
        if len(i)>1:
            if len(i) > 20:
                try:
                    cur_list = re.split(r'。|!', i)
                    for i in cur_list:
                        if len(i)>1:
                            final_list.append(i+'。')
                except:
                    pass
            else:
                final_list.append(i)
            '''
        final_list.append(i)
        '''
    final_list = [x for x in final_list if x != '']
    return final_list

def get_text(text, language_str, hps):
    norm_text, phone, tone, word2ph = clean_text(text, language_str)
    phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)

    if hps.data.add_blank:
        phone = commons.intersperse(phone, 0)
        tone = commons.intersperse(tone, 0)
        language = commons.intersperse(language, 0)
        for i in range(len(word2ph)):
            word2ph[i] = word2ph[i] * 2
        word2ph[0] += 1
    bert = get_bert(norm_text, word2ph, language_str, device)
    del word2ph
    assert bert.shape[-1] == len(phone), phone

    if language_str == "ZH":
        bert = bert
        ja_bert = torch.zeros(768, len(phone))
    elif language_str == "JA":
        ja_bert = bert
        bert = torch.zeros(1024, len(phone))
    else:
        bert = torch.zeros(1024, len(phone))
        ja_bert = torch.zeros(768, len(phone))

    assert bert.shape[-1] == len(
        phone
    ), f"Bert seq len {bert.shape[-1]} != {len(phone)}"

    phone = torch.LongTensor(phone)
    tone = torch.LongTensor(tone)
    language = torch.LongTensor(language)
    return bert, ja_bert, phone, tone, language


def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language):
    global net_g
    bert, ja_bert, phones, tones, lang_ids = get_text(text, language, hps)
    with torch.no_grad():
        x_tst = phones.to(device).unsqueeze(0)
        tones = tones.to(device).unsqueeze(0)
        lang_ids = lang_ids.to(device).unsqueeze(0)
        bert = bert.to(device).unsqueeze(0)
        ja_bert = ja_bert.to(device).unsqueeze(0)
        x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
        del phones
        speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
        audio = (
            net_g.infer(
                x_tst,
                x_tst_lengths,
                speakers,
                tones,
                lang_ids,
                bert,
                ja_bert,
                sdp_ratio=sdp_ratio,
                noise_scale=noise_scale,
                noise_scale_w=noise_scale_w,
                length_scale=length_scale,
            )[0][0, 0]
            .data.cpu()
            .float()
            .numpy()
        )
        current_time = datetime.now()
        print(str(current_time)+':'+str(sid))
        del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
        return audio


def tts_fn(
    text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,LongSentence
):
    if not LongSentence:
        with torch.no_grad():
            audio = infer(
                text,
                sdp_ratio=sdp_ratio,
                noise_scale=noise_scale,
                noise_scale_w=noise_scale_w,
                length_scale=length_scale,
                sid=speaker,
                language= "JP" if is_japanese(text) else "ZH",
            )
            torch.cuda.empty_cache()
        return (hps.data.sampling_rate, audio)
    else:
        audiopath = 'voice.wav'
        a = ['【','[','(','(']
        b = ['】',']',')',')']
        for i in a:
            text = text.replace(i,'<')
        for i in b:
            text = text.replace(i,'>')
        final_list = extrac(text.replace('“','').replace('”',''))
        audio_fin = []
        for sentence in final_list:
            with torch.no_grad():
                audio = infer(
                    sentence,
                    sdp_ratio=sdp_ratio,
                    noise_scale=noise_scale,
                    noise_scale_w=noise_scale_w,
                    length_scale=length_scale,
                    sid=speaker,
                    language= "JP" if is_japanese(text) else "ZH",
                )
            audio_fin.append(audio)
        return (hps.data.sampling_rate, np.concatenate(audio_fin))

def split_into_sentences(text):
    """将文本分割为句子,基于中文的标点符号"""
    sentences = re.split(r'(?<=[。!?…\n])', text)
    return [sentence.strip() for sentence in sentences if sentence]


def seconds_to_ass_time(seconds):
    """将秒数转换为ASS时间格式"""
    hours = int(seconds / 3600)
    minutes = int((seconds % 3600) / 60)
    seconds = int(seconds) % 60
    milliseconds = int((seconds - int(seconds)) * 1000)
    return "{:01d}:{:02d}:{:02d}.{:02d}".format(hours, minutes, seconds, int(milliseconds / 10))

def generate_audio_and_srt_for_group(group, outputPath, group_index, sampling_rate, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,spealerList,silenceTime):
    audio_fin = []
    ass_entries = []
    start_time = 0

    ass_header = """[Script Info]
; Script generated by OpenAI Assistant
Title: Audiobook
ScriptType: v4.00+
WrapStyle: 0
PlayResX: 640
PlayResY: 360
ScaledBorderAndShadow: yes
[V4+ Styles]
Format: Name, Fontname, Fontsize, PrimaryColour, SecondaryColour, OutlineColour, BackColour, Bold, Italic, Underline, StrikeOut, ScaleX, ScaleY, Spacing, Angle, BorderStyle, Outline, Shadow, Alignment, MarginL, MarginR, MarginV, Encoding
Style: Default,Arial,20,&H00FFFFFF,&H000000FF,&H00000000,&H00000000,0,0,0,0,100,100,0,0,1,1,1,2,10,10,10,1
[Events]
Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text
"""

    for sentence in group:
        try:
            print(sentence)
            FakeSpeaker = sentence.split("|")[0]
            print(FakeSpeaker)
            SpeakersList = re.split('\n', spealerList)
            if FakeSpeaker in list(hps.data.spk2id.keys()):
                speaker = FakeSpeaker
            for i in SpeakersList:
                if FakeSpeaker == i.split("|")[1]:
                    speaker = i.split("|")[0]
            speaker_ids = hps.data.spk2id
            
            _, audio = tts_fn(sentence.split("|")[-1], speaker=speaker, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, LongSentence=True)
            silence_frames = int(silenceTime * 44010)
            silence_data = np.zeros((silence_frames,), dtype=audio.dtype)
            audio_fin.append(audio)
            audio_fin.append(silence_data)

            duration = len(audio) / sampling_rate
            end_time = start_time + duration + silenceTime
            ass_entries.append("Dialogue: 0,{},{},".format(seconds_to_ass_time(start_time), seconds_to_ass_time(end_time)) + "Default,,0,0,0,,{}".format(sentence.replace("|",":")))
            start_time = end_time
        except:
            pass
    wav_filename = os.path.join(outputPath, f'audiobook_part_{group_index}.wav')
    ass_filename = os.path.join(outputPath, f'audiobook_part_{group_index}.ass')

    write(wav_filename, sampling_rate, np.concatenate(audio_fin))

    with open(ass_filename, 'w', encoding='utf-8') as f:
        f.write(ass_header + '\n'.join(ass_entries))
    return (hps.data.sampling_rate, np.concatenate(audio_fin))
def extract_text_from_epub(file_path):
    book = epub.read_epub(file_path)
    content = []
    for item in book.items:
        if isinstance(item, epub.EpubHtml):
            soup = BeautifulSoup(item.content, 'html.parser')
            content.append(soup.get_text())
    return '\n'.join(content)

def extract_text_from_pdf(file_path):
    with open(file_path, 'rb') as file:
        reader = PdfReader(file)
        content = [page.extract_text() for page in reader.pages]
    return '\n'.join(content)

def extract_text_from_game2(data):
    current_content = []

    def _extract(data, current_data=None):
        nonlocal current_content
        
        if current_data is None:
            current_data = {}

        if isinstance(data, dict):
            if 'name' in data and 'body' in data:
                current_name = data['name']
                current_body = data['body'].replace('\n', '')
                current_content.append(f"{current_name}|{current_body}")

            for key, value in data.items():
                _extract(value, dict(current_data))

        elif isinstance(data, list):
            for item in data:
                _extract(item, dict(current_data))

    _extract(data)
    return '\n'.join(current_content)

def extract_text_from_file(inputFile):
    file_extension = os.path.splitext(inputFile)[1].lower()
    
    if file_extension == ".epub":
        return extract_text_from_epub(inputFile)
    elif file_extension == ".pdf":
        return extract_text_from_pdf(inputFile)
    elif file_extension == ".txt":
        with open(inputFile, 'r', encoding='utf-8') as f:
            return f.read()
    elif file_extension == ".asset":
        with open(inputFile, 'r', encoding='utf-8') as f:
            content =  json.load(f)
        return extract_text_from_game2(content) if extract_text_from_game2(content) != '' else extract_text_from_game2(content)
    else:
        raise ValueError(f"Unsupported file format: {file_extension}")

def audiobook(inputFile, groupsize, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,spealerList,silenceTime):
    directory_path = "books"
    output_path = "books/audiobook_part_1.wav"
 
    if os.path.exists(directory_path):
        shutil.rmtree(directory_path)

    os.makedirs(directory_path)
    text = extract_text_from_file(inputFile.name)
    sentences = split_into_sentences(text)
    GROUP_SIZE = groupsize
    for i in range(0, len(sentences), GROUP_SIZE):
        group = sentences[i:i+GROUP_SIZE]
        if spealerList == "":
            spealerList = "无"
        result = generate_audio_and_srt_for_group(group,directory_path, i//GROUP_SIZE + 1, 44100, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,spealerList,silenceTime)
        if not torch.cuda.is_available():
            return result
    return result

def loadmodel(model):
    _ = net_g.eval()
    _ = utils.load_checkpoint(model, net_g, None, skip_optimizer=True)
    return "success"


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-m", "--model", default="./logs/Bangdream/G_10000.pth", help="path of your model"
    )
    parser.add_argument(
        "-c",
        "--config",
        default="configs/config.json",
        help="path of your config file",
    )
    parser.add_argument(
        "--share", default=True, help="make link public", action="store_true"
    )
    parser.add_argument(
        "-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log"
    )

    args = parser.parse_args()
    if args.debug:
        logger.info("Enable DEBUG-LEVEL log")
        logging.basicConfig(level=logging.DEBUG)
    device = (
        "cuda:0"
        if torch.cuda.is_available()
        else (
            "mps"
            if sys.platform == "darwin" and torch.backends.mps.is_available()
            else "cpu"
        )
    )
    hps = utils.get_hparams_from_file(args.config)
    net_g = SynthesizerTrn(
        len(symbols),
        hps.data.filter_length // 2 + 1,
        hps.train.segment_size // hps.data.hop_length,
        n_speakers=hps.data.n_speakers,
        **hps.model,
    ).to(device)
    loadmodel(args.model)
    speaker_ids = hps.data.spk2id
    speakers = list(speaker_ids.keys())
    languages = ["ZH", "JP"]
    examples = [
        ["filelist/Scenarioband6-018.asset", 500, "つくし", "ましろ|真白\n七深|七深\n透子|透子\nつくし|筑紫\n瑠唯|瑠唯\nそよ|素世\n祥子|祥子", "扩展功能"],
    ]
    modelPaths = []
    for dirpath, dirnames, filenames in os.walk("./logs/Bangdream/"):
        for filename in filenames:
            modelPaths.append(os.path.join(dirpath, filename))
    with gr.Blocks() as app:
        gr.Markdown(
             f"少歌邦邦全员TTS,使用本模型请严格遵守法律法规!\n备份: <a href='https://huggingface.co/spaces/Mahiruoshi/MyGO_VIts-bert'>V1.0版本模型</a> 查看使用说明</a>\m 发布二创作品请注明项目和本模型作者<a href='https://space.bilibili.com/19874615/'>B站@Mahiroshi</a>及项目链接\n从 <a href='https://nijigaku.top/2023/10/03/BangDreamTTS/'>我的博客站点</a> 查看使用说明</a>"
        )
        for band in BandList:
            with gr.TabItem(band):
                for name in BandList[band]:
                    with gr.TabItem(name):
                        with gr.Row():
                            with gr.Column():
                                with gr.Row():
                                    gr.Markdown(
                                        '<div align="center">'
                                        f'<img style="width:auto;height:400px;" src="file/image/{name}.png">' 
                                        '</div>'
                                    )
                                length_scale = gr.Slider(
                                        minimum=0.1, maximum=2, value=1, step=0.01, label="语速调节"
                                    )
                                with gr.Accordion(label="切换模型(合成中文建议切换为早期模型)", open=False):
                                    modelstrs = gr.Dropdown(label = "模型", choices = modelPaths, value = modelPaths[0], type = "value")
                                    btnMod = gr.Button("载入模型")
                                    statusa = gr.TextArea()
                                    btnMod.click(loadmodel, inputs=[modelstrs], outputs = [statusa])
                            with gr.Column():
                                text = gr.TextArea(
                                    label="输入纯日语或者中文",
                                    placeholder="输入纯日语或者中文",
                                    value="有个人躺在地上,哀嚎......\n有个人睡着了,睡在盒子里。\n我要把它打开,看看他的梦是什么。",
                                )                                
                                btn = gr.Button("点击生成", variant="primary")
                                audio_output = gr.Audio(label="Output Audio")
                                with gr.Accordion(label="其它参数设定", open=False):
                                    sdp_ratio = gr.Slider(
                                    minimum=0, maximum=1, value=0.2, step=0.01, label="SDP/DP混合比"
                                    )
                                    noise_scale = gr.Slider(
                                        minimum=0.1, maximum=2, value=0.6, step=0.01, label="感情调节"
                                    )
                                    noise_scale_w = gr.Slider(
                                        minimum=0.1, maximum=2, value=0.8, step=0.01, label="音素长度"
                                    )
                                    LongSentence = gr.Checkbox(value=True, label="Generate LongSentence")
                                    speaker = gr.Dropdown(
                                        choices=speakers, value=name, label="说话人"
                                    )
                    btn.click(
                        tts_fn,
                        inputs=[
                            text,
                            speaker,
                            sdp_ratio,
                            noise_scale,
                            noise_scale_w,
                            length_scale,
                            LongSentence,
                        ],
                        outputs=[audio_output],
                    )
        for i in examples:
            with gr.Tab(i[-1]):
                with gr.Row():
                    with gr.Column():
                        gr.Markdown(
                                        f"从 <a href='https://nijigaku.top/2023/10/03/BangDreamTTS/'>我的博客站点</a> 查看自制galgame使用说明\n</a>"
                                    )
                        inputFile = gr.inputs.File(label="上传txt(可设置角色对应表)、epub或mobi文件")
                        groupSize = gr.Slider(
                        minimum=10, maximum=100,value = i[1], step=1, label="当个音频文件包含的最大字数"
                        )
                        silenceTime = gr.Slider(
                        minimum=0, maximum=1, value=0.5, step=0.1, label="句子的间隔"
                        )
                        spealerList = gr.TextArea(
                                            label="角色对应表",
                                            placeholder="左边是你想要在每一句话合成中用到的speaker(见角色清单)右边是你上传文本时分隔符左边设置的说话人:{ChoseSpeakerFromConfigList1}|{SeakerInUploadText1}\n{ChoseSpeakerFromConfigList2}|{SeakerInUploadText2}\n{ChoseSpeakerFromConfigList3}|{SeakerInUploadText3}\n",
                                            value = i[3],
                        )                  
                        speaker = gr.Dropdown(
                            choices=speakers, value = i[2], label="选择默认说话人"
                        )
                    with gr.Column():
                        sdp_ratio = gr.Slider(
                        minimum=0, maximum=1, value=0.2, step=0.01, label="SDP/DP混合比"
                        )
                        noise_scale = gr.Slider(
                            minimum=0.1, maximum=2, value=0.6, step=0.01, label="感情调节"
                        )
                        noise_scale_w = gr.Slider(
                            minimum=0.1, maximum=2, value=0.8, step=0.01, label="音素长度"
                        )
                        length_scale = gr.Slider(
                            minimum=0.1, maximum=2, value=1, step=0.01, label="生成长度"
                        )
                        LastAudioOutput = gr.Audio(label="当用cuda在本地运行时才能在book文件夹下浏览全部合成内容")
                        btn2 = gr.Button("点击生成", variant="primary")
                    btn2.click(
                        audiobook,
                        inputs=[
                            inputFile,
                            groupSize,
                            speaker,
                            sdp_ratio,
                            noise_scale,
                            noise_scale_w,
                            length_scale,
                            spealerList,
                            silenceTime
                        ],
                        outputs=[LastAudioOutput],
                    )
app.launch()