File size: 17,254 Bytes
879cbd2
5422b18
879cbd2
5422b18
 
 
879cbd2
 
 
 
 
 
 
 
 
 
5422b18
 
 
 
50ea4f2
 
352a927
5422b18
879cbd2
 
5422b18
879cbd2
5422b18
50ea4f2
 
5422b18
352a927
50ea4f2
 
352a927
 
50ea4f2
 
879cbd2
5422b18
 
 
879cbd2
28fb579
 
 
 
 
 
 
 
 
 
 
 
 
879cbd2
 
50ea4f2
 
 
 
 
 
 
 
 
879cbd2
5422b18
 
 
 
 
 
 
 
 
50ea4f2
 
879cbd2
5422b18
 
 
 
 
 
352a927
50ea4f2
5422b18
 
 
 
 
 
 
 
 
 
 
879cbd2
2927e53
879cbd2
 
5422b18
 
 
 
 
 
 
 
879cbd2
 
 
5422b18
879cbd2
 
 
 
 
5422b18
 
879cbd2
 
 
 
5422b18
 
879cbd2
 
5422b18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
879cbd2
 
50ea4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c864f13
 
 
 
 
879cbd2
5422b18
 
 
 
879cbd2
 
 
5422b18
c864f13
5422b18
c864f13
 
879cbd2
352a927
 
 
 
 
 
 
 
 
 
 
 
 
879cbd2
 
 
 
 
 
 
 
 
 
 
 
ccbc190
 
 
352a927
5422b18
c864f13
 
 
 
879cbd2
 
0a949ac
 
ccbc190
879cbd2
0a949ac
879cbd2
352a927
 
 
ccbc190
879cbd2
0a949ac
879cbd2
 
0a949ac
879cbd2
 
0a949ac
879cbd2
5422b18
 
 
879cbd2
0a949ac
879cbd2
 
 
 
 
 
 
 
 
 
5422b18
879cbd2
 
0a949ac
879cbd2
5422b18
50ea4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5422b18
50ea4f2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
# flake8: noqa: E402
import os
import logging

import re_matching

logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)

logging.basicConfig(
    level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
)

logger = logging.getLogger(__name__)

import warnings
warnings.filterwarnings("ignore", category=UserWarning, module="gradio.blocks")

import shutil

from datetime import datetime
import re
import torch
import utils
from infer import infer, latest_version, get_net_g
import gradio as gr
import numpy as np
from tools.sentence import extrac, is_japanese, is_chinese, seconds_to_ass_time, extract_text_from_file, remove_annotations
import sys
import math

from scipy.io.wavfile import write

from tools.translate import translate

import random

net_g = None

cara_list = ["ひまり","たえ","彩","日菜","美咲","ましろ","燐子","香子","珠緒","たえ"]

BandList = {
    
        "PoppinParty":["香澄","有咲","たえ","りみ","沙綾"],
        "Afterglow":["蘭","モカ","ひまり","巴","つぐみ"],
        "HelloHappyWorld":["こころ","美咲","薫","花音","はぐみ"],
        "PastelPalettes":["彩","日菜","千聖","イヴ","麻弥"],
        "Roselia":["友希那","紗夜","リサ","燐子","あこ"],
        "RaiseASuilen":["レイヤ","ロック","ますき","チュチュ","パレオ"],
        "Morfonica":["ましろ","瑠唯","つくし","七深","透子"],
        "MyGo&AveMujica(Part)":["燈","愛音","そよ","立希","楽奈","祥子","睦","海鈴"],
        "圣翔音乐学园":["華戀","光","香子","雙葉","真晝","純那","克洛迪娜","真矢","奈奈"],
        "凛明馆女子学校":["珠緒","壘","文","悠悠子","一愛"],
        "弗隆提亚艺术学校":["艾露","艾露露","菈樂菲","司","靜羽"],
        "西克菲尔特音乐学院":["晶","未知留","八千代","栞","美帆"]
}

device = (
        "cuda:0"
        if torch.cuda.is_available()
        else (
            "mps"
            if sys.platform == "darwin" and torch.backends.mps.is_available()
            else "cpu"
        )
    )

def generate_audio(
    text,
    sdp_ratio,
    noise_scale,
    noise_scale_w,
    length_scale,
    speaker,
    language,
):
    if len(text) < 2:
        return
    with torch.no_grad():
        if language == 'Auto':
            language = "EN"
            if is_japanese(text):
                language = "JP"
            elif is_chinese(text):
                language = "ZH"
        current_time = datetime.now()
        print(str(current_time)+':'+str(speaker)+":"+ text+":"+language)
        audio = infer(
            text,
            sdp_ratio=sdp_ratio,
            noise_scale=noise_scale,
            noise_scale_w=noise_scale_w,
            length_scale=length_scale,
            sid=speaker,
            language=language,
            hps=hps,
            net_g=net_g,
            device=device,
        )
    return gr.processing_utils.convert_to_16_bit_wav(audio)

def tts_fn(
    text: str,
    speaker,
    sdp_ratio,
    noise_scale,
    noise_scale_w,
    length_scale,
    language,
    LongSentence,
):
    if not LongSentence:
        with torch.no_grad():
            audio = generate_audio(
                text,
                sdp_ratio=sdp_ratio,
                noise_scale=noise_scale,
                noise_scale_w=noise_scale_w,
                length_scale=length_scale,
                speaker=speaker,
                language= language,
            )
            torch.cuda.empty_cache()
        return (hps.data.sampling_rate, audio)
    else:

        final_list = extrac(text)
        audio_fin = []
        for sentence in final_list:
            if len(sentence) > 1:
                with torch.no_grad():
                    audio = generate_audio(
                        sentence,
                        sdp_ratio=sdp_ratio,
                        noise_scale=noise_scale,
                        noise_scale_w=noise_scale_w,
                        length_scale=length_scale,
                        speaker=speaker,
                        language= language,
                    )
                silence_frames = int(math.log(len(sentence)+1, 1000) * 44010) if is_chinese(sentence) else int(math.log(len(sentence)+1, 3000) * 44010)
                silence_data = np.zeros((silence_frames,), dtype=audio.dtype)
                audio_fin.append(audio)
                audio_fin.append(silence_data)
        return (hps.data.sampling_rate, np.concatenate(audio_fin))

def generate_audio_and_srt_for_group(group, outputPath, group_index, sampling_rate, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,spealerList,silenceTime):
    audio_fin = []
    ass_entries = []
    start_time = 0
    speaker = random.choice(cara_list)
    ass_header = """[Script Info]
; 我没意见
Title: Audiobook
ScriptType: v4.00+
WrapStyle: 0
PlayResX: 640
PlayResY: 360
ScaledBorderAndShadow: yes
[V4+ Styles]
Format: Name, Fontname, Fontsize, PrimaryColour, SecondaryColour, OutlineColour, BackColour, Bold, Italic, Underline, StrikeOut, ScaleX, ScaleY, Spacing, Angle, BorderStyle, Outline, Shadow, Alignment, MarginL, MarginR, MarginV, Encoding
Style: Default,Arial,20,&H00FFFFFF,&H000000FF,&H00000000,&H00000000,0,0,0,0,100,100,0,0,1,1,1,2,10,10,10,1
[Events]
Format: Layer, Start, End, Style, Name, MarginL, MarginR, MarginV, Effect, Text
"""

    for sentence in group:
        try:
            FakeSpeaker = sentence.split("|")[0]
            print(FakeSpeaker)
            SpeakersList = re.split('\n', spealerList)
            if FakeSpeaker in list(hps.data.spk2id.keys()):
                speaker = FakeSpeaker
            for i in SpeakersList:
                if FakeSpeaker == i.split("|")[1]:
                    speaker = i.split("|")[0]
            if sentence != '\n':
                audio = generate_audio(remove_annotations(sentence.split("|")[-1]).replace(" ",""), speaker=speaker, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, language='Auto')
                silence_frames = int(silenceTime * 44010)
                silence_data = np.zeros((silence_frames,), dtype=audio.dtype)
                audio_fin.append(audio)
                audio_fin.append(silence_data)

                duration = len(audio) / sampling_rate
                end_time = start_time + duration + silenceTime
                ass_entries.append("Dialogue: 0,{},{},".format(seconds_to_ass_time(start_time), seconds_to_ass_time(end_time)) + "Default,,0,0,0,,{}".format(sentence.replace("|",":")))
                start_time = end_time
        except:
            pass
    wav_filename = os.path.join(outputPath, f'audiobook_part_{group_index}.wav')
    ass_filename = os.path.join(outputPath, f'audiobook_part_{group_index}.ass')

    write(wav_filename, sampling_rate, np.concatenate(audio_fin))

    with open(ass_filename, 'w', encoding='utf-8') as f:
        f.write(ass_header + '\n'.join(ass_entries))
    return (hps.data.sampling_rate, np.concatenate(audio_fin))

def audiobook(inputFile, groupsize, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,spealerList,silenceTime,filepath):
    directory_path = filepath if torch.cuda.is_available() else "books"
 
    if os.path.exists(directory_path):
        shutil.rmtree(directory_path)

    os.makedirs(directory_path)
    text = extract_text_from_file(inputFile.name)
    sentences = extrac(text)
    GROUP_SIZE = groupsize
    for i in range(0, len(sentences), GROUP_SIZE):
        group = sentences[i:i+GROUP_SIZE]
        if spealerList == "":
            spealerList = "无"
        result = generate_audio_and_srt_for_group(group,directory_path, i//GROUP_SIZE + 1, 44100, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale,spealerList,silenceTime)
        if not torch.cuda.is_available():
            return result
    return result

def loadmodel(model):
    _ = net_g.eval()
    _ = utils.load_checkpoint(model, net_g, None, skip_optimizer=True)
    return "success"

if __name__ == "__main__":
    hps = utils.get_hparams_from_file('Data/BangDream/config.json')
    version = hps.version if hasattr(hps, "version") else latest_version
    net_g = get_net_g(
        model_path='Data/BangDream/models/G_10000.pth', version=version, device=device, hps=hps
    )
    speaker_ids = hps.data.spk2id
    speakers = list(speaker_ids.keys())
    languages = [ "Auto", "ZH", "JP"]
    modelPaths = []
    for dirpath, dirnames, filenames in os.walk("Data/BangDream/models/"):
        for filename in filenames:
            modelPaths.append(os.path.join(dirpath, filename))
    with gr.Blocks() as app:
        gr.Markdown(value="""
            少歌邦邦全员在线语音合成(Bert-Vits2)\n
            作者:B站@Mahiroshi https://space.bilibili.com/19874615\n
            声音归属:BangDream及少歌手游\n
            Bert-VITS2项目:https://github.com/Stardust-minus/Bert-VITS2\n
            使用参考: https://nijigaku.top/2023/10/03/BangDreamTTS\n
            数据集制作: https://huggingface.co/spaces/Mahiruoshi/BangDream-Bert-VITS2/tree/main/%E7%88%AC%E8%99%AB
            服务器启动示例: https://huggingface.co/spaces/Mahiruoshi/BangDream-Bert-VITS2/blob/main/server.py\n
            使用本模型请严格遵守法律法规!禁止生成任何有损声优或者企划的内容!!!!!\n
            このモデルを使用する際は法律法規を厳守してください!声優や企画に損害を与える内容の生成は禁止です!!!!!\n
            Please strictly follow the laws in your country and regulations when using this model! It is prohibited to generate any content that is harmful to others!!!!!\n
            发布二创作品请标注本项目作者及链接、作品使用Bert-VITS2 AI生成!\n                
            """)
        for band in BandList:
            with gr.TabItem(band):
                for name in BandList[band]:
                    with gr.TabItem(name):
                        with gr.Row():
                            with gr.Column():
                                with gr.Row():
                                    gr.Markdown(
                                        '<div align="center">'
                                        f'<img style="width:auto;height:400px;" src="file/image/{name}.png">' 
                                        '</div>'
                                    )
                                length_scale = gr.Slider(
                                        minimum=0.1, maximum=2, value=1, step=0.01, label="语速调节"
                                    )
                                LongSentence = gr.Checkbox(value=True, label="自动拆分句子")
                                with gr.Accordion(label="切换模型", open=False):
                                    modelstrs = gr.Dropdown(label = "模型", choices = modelPaths, value = modelPaths[0], type = "value")
                                    btnMod = gr.Button("载入模型")
                                    statusa = gr.TextArea()
                                    btnMod.click(loadmodel, inputs=[modelstrs], outputs = [statusa])
                            with gr.Column():
                                text = gr.TextArea(
                                    label="输入纯日语或者中文",
                                    placeholder="输入纯日语或者中文",
                                    value="有个人躺在地上,哀嚎......\n有个人睡着了,睡在盒子里。\n我要把它打开,看看他的梦是什么。",
                                )                                
                                btn = gr.Button("点击生成", variant="primary")
                                audio_output = gr.Audio(label="Output Audio")
                                btntran = gr.Button("快速中翻日")
                                translateResult = gr.TextArea("从这复制翻译后的文本")
                                btntran.click(translate, inputs=[text], outputs = [translateResult])
                                with gr.Accordion(label="其它参数设定", open=False):
                                    sdp_ratio = gr.Slider(
                                    minimum=0, maximum=1, value=0.2, step=0.01, label="SDP/DP混合比"
                                    )
                                    noise_scale = gr.Slider(
                                        minimum=0.1, maximum=2, value=0.6, step=0.01, label="感情调节"
                                    )
                                    noise_scale_w = gr.Slider(
                                        minimum=0.1, maximum=2, value=0.8, step=0.01, label="音素长度"
                                    )
                                    language = gr.Dropdown(
                                    choices=languages, value=languages[0], label="选择语言(默认自动)"
                                    )
                                    speaker = gr.Dropdown(
                                        choices=speakers, value=name, label="说话人"
                                    )
                    btn.click(
                        tts_fn,
                        inputs=[
                            text,
                            speaker,
                            sdp_ratio,
                            noise_scale,
                            noise_scale_w,
                            length_scale,
                            language,
                            LongSentence,
                        ],
                        outputs=[audio_output],
                    )

        with gr.Tab('拓展功能'):
            with gr.Row():
                with gr.Column():
                    gr.Markdown(
                                    f"从 <a href='https://nijigaku.top/2023/10/03/BangDreamTTS/'>我的博客站点</a> 查看自制galgame使用说明\n</a>"
                                )
                    inputFile = gr.UploadButton(label="上传txt(可设置角色对应表)、epub或mobi文件")
                    groupSize = gr.Slider(
                    minimum=10, maximum=1000 if  torch.cuda.is_available() else 50,value = 50, step=1, label="单个音频文件包含的最大字数"
                    )
                    silenceTime = gr.Slider(
                    minimum=0, maximum=1, value=0.5, step=0.1, label="句子的间隔"
                    )
                    filepath = gr.TextArea(
                                        label="本地合成时的音频存储文件夹(会清空文件夹警告)",
                                        value = "D:/audiobook/book1",
                    )
                    spealerList = gr.TextArea(
                                        label="角色对应表(example)",
                                        placeholder="左边是你想要在每一句话合成中用到的speaker(见角色清单)右边是你上传文本时分隔符左边设置的说话人:{ChoseSpeakerFromConfigList1}|{SeakerInUploadText1}\n{ChoseSpeakerFromConfigList2}|{SeakerInUploadText2}\n{ChoseSpeakerFromConfigList3}|{SeakerInUploadText3}\n",
                                        value = "ましろ|真白\n七深|七深\n透子|透子\nつくし|筑紫\n瑠唯|瑠唯\nそよ|素世\n祥子|祥子",
                    )                  
                    speaker = gr.Dropdown(
                        choices=speakers, value = "ましろ", label="选择默认说话人"
                    )
                with gr.Column():
                    sdp_ratio = gr.Slider(
                    minimum=0, maximum=1, value=0.2, step=0.01, label="SDP/DP混合比"
                    )
                    noise_scale = gr.Slider(
                        minimum=0.1, maximum=2, value=0.6, step=0.01, label="感情调节"
                    )
                    noise_scale_w = gr.Slider(
                        minimum=0.1, maximum=2, value=0.8, step=0.01, label="音素长度"
                    )
                    length_scale = gr.Slider(
                        minimum=0.1, maximum=2, value=1, step=0.01, label="生成长度"
                    )
                    LastAudioOutput = gr.Audio(label="当使用cuda时才能在本地文件夹浏览全部文件")
                    btn2 = gr.Button("点击生成", variant="primary")
                btn2.click(
                    audiobook,
                    inputs=[
                        inputFile,
                        groupSize,
                        speaker,
                        sdp_ratio,
                        noise_scale,
                        noise_scale_w,
                        length_scale,
                        spealerList,
                        silenceTime,
                        filepath
                    ],
                    outputs=[LastAudioOutput],
                )
print("推理页面已开启!")
app.launch()