File size: 6,691 Bytes
9fe7444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import os
import glob
import sys
import argparse
import logging
import json
import subprocess
import numpy as np
from scipy.io.wavfile import read
import torch

MATPLOTLIB_FLAG = False

logging.basicConfig(stream=sys.stdout, level=logging.ERROR)
logger = logging


def load_checkpoint(checkpoint_path, model, optimizer=None):
    assert os.path.isfile(checkpoint_path)
    checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
    iteration = checkpoint_dict['iteration']
    learning_rate = checkpoint_dict['learning_rate']
    if optimizer is not None:
        optimizer.load_state_dict(checkpoint_dict['optimizer'])
    saved_state_dict = checkpoint_dict['model']
    if hasattr(model, 'module'):
        state_dict = model.module.state_dict()
    else:
        state_dict = model.state_dict()
    new_state_dict = {}
    for k, v in state_dict.items():
        try:
            new_state_dict[k] = saved_state_dict[k]
        except:
            logger.info("%s is not in the checkpoint" % k)
            new_state_dict[k] = v
    if hasattr(model, 'module'):
        model.module.load_state_dict(new_state_dict)
    else:
        model.load_state_dict(new_state_dict)
    logger.info("Loaded checkpoint '{}' (iteration {})".format(
        checkpoint_path, iteration))
    return model, optimizer, learning_rate, iteration


def plot_spectrogram_to_numpy(spectrogram):
    global MATPLOTLIB_FLAG
    if not MATPLOTLIB_FLAG:
        import matplotlib
        matplotlib.use("Agg")
        MATPLOTLIB_FLAG = True
        mpl_logger = logging.getLogger('matplotlib')
        mpl_logger.setLevel(logging.WARNING)
    import matplotlib.pylab as plt
    import numpy as np

    fig, ax = plt.subplots(figsize=(10, 2))
    im = ax.imshow(spectrogram, aspect="auto", origin="lower",
                   interpolation='none')
    plt.colorbar(im, ax=ax)
    plt.xlabel("Frames")
    plt.ylabel("Channels")
    plt.tight_layout()

    fig.canvas.draw()
    data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
    data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
    plt.close()
    return data


def plot_alignment_to_numpy(alignment, info=None):
    global MATPLOTLIB_FLAG
    if not MATPLOTLIB_FLAG:
        import matplotlib
        matplotlib.use("Agg")
        MATPLOTLIB_FLAG = True
        mpl_logger = logging.getLogger('matplotlib')
        mpl_logger.setLevel(logging.WARNING)
    import matplotlib.pylab as plt
    import numpy as np

    fig, ax = plt.subplots(figsize=(6, 4))
    im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
                   interpolation='none')
    fig.colorbar(im, ax=ax)
    xlabel = 'Decoder timestep'
    if info is not None:
        xlabel += '\n\n' + info
    plt.xlabel(xlabel)
    plt.ylabel('Encoder timestep')
    plt.tight_layout()

    fig.canvas.draw()
    data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
    data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
    plt.close()
    return data


def load_wav_to_torch(full_path):
    sampling_rate, data = read(full_path)
    return torch.FloatTensor(data.astype(np.float32)), sampling_rate


def load_filepaths_and_text(filename, split="|"):
    with open(filename, encoding='utf-8') as f:
        filepaths_and_text = [line.strip().split(split) for line in f]
    return filepaths_and_text


def get_hparams(init=True):
    parser = argparse.ArgumentParser()
    parser.add_argument('-c', '--config', type=str, default="./configs/base.json",
                        help='JSON file for configuration')
    parser.add_argument('-m', '--model', type=str, required=True,
                        help='Model name')

    args = parser.parse_args()
    model_dir = os.path.join("./logs", args.model)

    if not os.path.exists(model_dir):
        os.makedirs(model_dir)

    config_path = args.config
    config_save_path = os.path.join(model_dir, "config.json")
    if init:
        with open(config_path, "r") as f:
            data = f.read()
        with open(config_save_path, "w") as f:
            f.write(data)
    else:
        with open(config_save_path, "r") as f:
            data = f.read()
    config = json.loads(data)

    hparams = HParams(**config)
    hparams.model_dir = model_dir
    return hparams


def get_hparams_from_dir(model_dir):
    config_save_path = os.path.join(model_dir, "config.json")
    with open(config_save_path, "r") as f:
        data = f.read()
    config = json.loads(data)

    hparams = HParams(**config)
    hparams.model_dir = model_dir
    return hparams


def get_hparams_from_file(config_path):
    with open(config_path, "r", encoding="utf-8") as f:
        data = f.read()
    config = json.loads(data)

    hparams = HParams(**config)
    return hparams


def check_git_hash(model_dir):
    source_dir = os.path.dirname(os.path.realpath(__file__))
    if not os.path.exists(os.path.join(source_dir, ".git")):
        logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
            source_dir
        ))
        return

    cur_hash = subprocess.getoutput("git rev-parse HEAD")

    path = os.path.join(model_dir, "githash")
    if os.path.exists(path):
        saved_hash = open(path).read()
        if saved_hash != cur_hash:
            logger.warn("git hash values are different. {}(saved) != {}(current)".format(
                saved_hash[:8], cur_hash[:8]))
    else:
        open(path, "w").write(cur_hash)


def get_logger(model_dir, filename="train.log"):
    global logger
    logger = logging.getLogger(os.path.basename(model_dir))
    logger.setLevel(logging.DEBUG)

    formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
    if not os.path.exists(model_dir):
        os.makedirs(model_dir)
    h = logging.FileHandler(os.path.join(model_dir, filename))
    h.setLevel(logging.DEBUG)
    h.setFormatter(formatter)
    logger.addHandler(h)
    return logger


class HParams():
    def __init__(self, **kwargs):
        for k, v in kwargs.items():
            if type(v) == dict:
                v = HParams(**v)
            self[k] = v

    def keys(self):
        return self.__dict__.keys()

    def items(self):
        return self.__dict__.items()

    def values(self):
        return self.__dict__.values()

    def __len__(self):
        return len(self.__dict__)

    def __getitem__(self, key):
        return getattr(self, key)

    def __setitem__(self, key, value):
        return setattr(self, key, value)

    def __contains__(self, key):
        return key in self.__dict__

    def __repr__(self):
        return self.__dict__.__repr__()