Spaces:
Sleeping
Sleeping
File size: 13,694 Bytes
fd6f594 8928aba fd6f594 8928aba fd6f594 8928aba fd6f594 b639d03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
import tensorflow as tf
from tensorflow.keras import layers, models # type: ignore
import numpy as np
class TrajectoryGRU2D(layers.Layer):
def __init__(self, filters, kernel_size, return_sequences=True, **kwargs):
super().__init__(**kwargs)
self.filters = filters
self.kernel_size = kernel_size
self.return_sequences = return_sequences
# Projection layer to match GRU feature space
self.input_projection = layers.Conv2D(filters, (1, 1), padding="same")
# GRU Gates
self.conv_z = layers.Conv2D(filters, kernel_size, padding="same", activation="sigmoid")
self.conv_r = layers.Conv2D(filters, kernel_size, padding="same", activation="sigmoid")
self.conv_h = layers.Conv2D(filters, kernel_size, padding="same", activation="tanh")
# Motion-based trajectory update
self.motion_conv = layers.Conv2D(filters, kernel_size, padding="same", activation="tanh")
def build(self, input_shape):
# Ensures input_projection is built with the correct input shape
self.input_projection.build(input_shape[1:]) # Ignore batch dimension
super().build(input_shape)
def call(self, inputs):
# inputs shape: (batch_size, time_steps, height, width, channels)
batch_size, time_steps, height, width, channels = tf.unstack(tf.shape(inputs))
time_steps = inputs.shape[1]
# Initialize hidden state
h_t = tf.zeros((batch_size, height, width, self.filters))
# List to store outputs at each time step
outputs = []
# Iterate over time steps
for t in range(time_steps):
# Get the input at time step t
x_t = inputs[:, t, :, :, :]
# Project input to match GRU feature dimension
x_projected = self.input_projection(x_t)
# Compute motion-based trajectory update
motion_update = self.motion_conv(x_projected)
# Concatenate projected input, previous hidden state, and motion update
combined = tf.concat([x_projected, h_t, motion_update], axis=-1)
# Compute GRU gates
z = self.conv_z(combined) # Update gate
r = self.conv_r(combined) # Reset gate
# Compute candidate hidden state
h_tilde = self.conv_h(tf.concat([x_projected, r * h_t], axis=-1))
# Update hidden state with motion-based trajectory
h_t = (1 - z) * h_t + z * h_tilde + motion_update # Add motion update
# Store the output if return_sequences is True
if self.return_sequences:
outputs.append(h_t)
# Stack outputs along the time dimension if return_sequences is True
if self.return_sequences:
outputs = tf.stack(outputs, axis=1)
else:
outputs = h_t
return outputs
def compute_output_shape(self, input_shape):
if self.return_sequences:
return (input_shape[0], input_shape[1], input_shape[2], input_shape[3], self.filters)
else:
return (input_shape[0], input_shape[2], input_shape[3], self.filters)
def build_tgru_model(input_shape=(8, 95, 95, 2)): # (time_steps, height, width, channels)
input_tensor = layers.Input(shape=input_shape)
# Apply TGRU Layers
x = TrajectoryGRU2D(filters=32, kernel_size=(3, 3), return_sequences=True)(input_tensor)
x = layers.Conv3D(filters=32, kernel_size=(3, 3, 3), padding='same', activation='relu')(x)
x = layers.MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), padding='same')(x)
x = TrajectoryGRU2D(filters=64, kernel_size=(3, 3), return_sequences=True)(x)
x = layers.Conv3D(filters=64, kernel_size=(3, 3, 3), padding='same', activation='relu')(x)
x = layers.MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), padding='same')(x)
x = TrajectoryGRU2D(filters=128, kernel_size=(3, 3), return_sequences=True)(x)
x = layers.Conv3D(filters=128, kernel_size=(3, 3, 3), padding='same', activation='relu')(x)
x = layers.MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), padding='same')(x)
# Flatten before Fully Connected Layer
x = layers.Flatten()(x)
# x = layers.Dense(1, activation='sigmoid')(x)
model = models.Model(inputs=input_tensor, outputs=x)
return model
def radial_structure_subnet(input_shape):
"""
Creates the subnet for extracting TC radial structure features using a five-branch CNN design with 2D convolutions.
Parameters:
- input_shape: tuple, shape of the input data (e.g., (95, 95, 3))
Returns:
- model: tf.keras.Model, the radial structure subnet model
"""
input_tensor = layers.Input(shape=input_shape)
# Divide input data into four quadrants (NW, NE, SW, SE)
# Assuming the input shape is (batch_size, height, width, channels)
# Quadrant extraction - using slicing to separate quadrants
nw_quadrant = input_tensor[:, :input_shape[0]//2, :input_shape[1]//2, :]
ne_quadrant = input_tensor[:, :input_shape[0]//2, input_shape[1]//2:, :]
sw_quadrant = input_tensor[:, input_shape[0]//2:, :input_shape[1]//2, :]
se_quadrant = input_tensor[:, input_shape[0]//2:, input_shape[1]//2:, :]
target_height = max(input_shape[0]//2, input_shape[0] - input_shape[0]//2) # 48
target_width = max(input_shape[1]//2, input_shape[1] - input_shape[1]//2) # 48
# Padding the quadrants to match the target size (48, 48)
nw_quadrant = layers.ZeroPadding2D(padding=((0, target_height - nw_quadrant.shape[1]),
(0, target_width - nw_quadrant.shape[2])))(nw_quadrant)
ne_quadrant = layers.ZeroPadding2D(padding=((0, target_height - ne_quadrant.shape[1]),
(0, target_width - ne_quadrant.shape[2])))(ne_quadrant)
sw_quadrant = layers.ZeroPadding2D(padding=((0, target_height - sw_quadrant.shape[1]),
(0, target_width - sw_quadrant.shape[2])))(sw_quadrant)
se_quadrant = layers.ZeroPadding2D(padding=((0, target_height - se_quadrant.shape[1]),
(0, target_width - se_quadrant.shape[2])))(se_quadrant)
print(nw_quadrant.shape)
print(ne_quadrant.shape)
print(sw_quadrant.shape)
print(se_quadrant.shape)
# Main branch (processing the entire structure)
main_branch = layers.Conv2D(filters=8, kernel_size=(3, 3), padding='same', activation='relu')(input_tensor)
y=layers.MaxPool2D()(main_branch)
y = layers.ZeroPadding2D(padding=((0, target_height - y.shape[1]),
(0, target_width - y.shape[2])))(y)
# Side branches (processing the individual quadrants)
nw_branch = layers.Conv2D(filters=8, kernel_size=(3, 3), padding='same', activation='relu')(nw_quadrant)
ne_branch = layers.Conv2D(filters=8, kernel_size=(3, 3), padding='same', activation='relu')(ne_quadrant)
sw_branch = layers.Conv2D(filters=8, kernel_size=(3, 3), padding='same', activation='relu')(sw_quadrant)
se_branch = layers.Conv2D(filters=8, kernel_size=(3, 3), padding='same', activation='relu')(se_quadrant)
# Apply padding to the side branches to match the dimensions of the main branch
# nw_branch = layers.UpSampling2D(size=(2, 2), interpolation='nearest')(nw_branch)
# ne_branch = layers.UpSampling2D(size=(2, 2), interpolation='nearest')(ne_branch)
# sw_branch = layers.UpSampling2D(size=(2, 2), interpolation='nearest')(sw_branch)
# se_branch = layers.UpSampling2D(size=(2, 2), interpolation='nearest')(se_branch)
# Fusion operations (concatenate the outputs from the main branch and side branches)
fusion = layers.concatenate([y, nw_branch, ne_branch, sw_branch, se_branch], axis=-1)
# Additional convolution layer to combine the fused features
x = layers.Conv2D(filters=16, kernel_size=(3, 3), padding='same', activation='relu')(fusion)
x=layers.MaxPool2D(pool_size=(2, 2))(x)
# Final dense layer for further processing
nw_branch = layers.Conv2D(filters=16, kernel_size=(3, 3), padding='same', activation='relu')(nw_branch)
ne_branch = layers.Conv2D(filters=16, kernel_size=(3, 3), padding='same', activation='relu')(ne_branch)
sw_branch = layers.Conv2D(filters=16, kernel_size=(3, 3), padding='same', activation='relu')(sw_branch)
se_branch = layers.Conv2D(filters=16, kernel_size=(3, 3), padding='same', activation='relu')(se_branch)
nw_branch = layers.MaxPool2D(pool_size=(2, 2))(nw_branch)
ne_branch = layers.MaxPool2D(pool_size=(2, 2))(ne_branch)
sw_branch = layers.MaxPool2D(pool_size=(2, 2))(sw_branch)
se_branch = layers.MaxPool2D(pool_size=(2, 2))(se_branch)
fusion = layers.concatenate([x, nw_branch, ne_branch, sw_branch, se_branch], axis=-1)
x = layers.Conv2D(filters=32, kernel_size=(3, 3), padding='same', activation='relu')(fusion)
x=layers.MaxPool2D(pool_size=(2, 2))(x)
nw_branch = layers.Conv2D(filters=32, kernel_size=(3, 3), padding='same', activation='relu')(nw_branch)
ne_branch = layers.Conv2D(filters=32, kernel_size=(3, 3), padding='same', activation='relu')(ne_branch)
sw_branch = layers.Conv2D(filters=32, kernel_size=(3, 3), padding='same', activation='relu')(sw_branch)
se_branch = layers.Conv2D(filters=32, kernel_size=(3, 3), padding='same', activation='relu')(se_branch)
nw_branch = layers.MaxPool2D(pool_size=(2, 2))(nw_branch)
ne_branch = layers.MaxPool2D(pool_size=(2, 2))(ne_branch)
sw_branch = layers.MaxPool2D(pool_size=(2, 2))(sw_branch)
se_branch = layers.MaxPool2D(pool_size=(2, 2))(se_branch)
fusion = layers.concatenate([x, nw_branch, ne_branch, sw_branch, se_branch], axis=-1)
x = layers.Conv2D(filters=32, kernel_size=(3, 3), activation='relu')(fusion)
x=layers.Conv2D(filters=32, kernel_size=(3, 3), activation=None)(x)
# Create and return the model
x=layers.Flatten()(x)
model = models.Model(inputs=input_tensor, outputs=x)
return model
# Define input shape (batch_size, height, width, channels)
# input_shape = (95, 95, 8) # Example input shape (95x95 spatial resolution, 3 channels)
# # Build the model
# model = radial_structure_subnet(input_shape)
# # Model summary
# model.summary()
def build_cnn_model(input_shape=(8, 8, 1)):
# Define the input layer
input_tensor = layers.Input(shape=input_shape)
# Convolutional layer
x = layers.Conv2D(64, (3, 3), padding='same')(input_tensor)
x = layers.BatchNormalization()(x)
x = layers.ReLU()(x)
# Flatten layer
x = layers.Flatten()(x)
# Create the model
model = models.Model(inputs=input_tensor, outputs=x)
return model
from tensorflow.keras import layers, models, Input # type: ignore
def build_combined_model():
# Define input shapes
input_shape_3d = (8, 95, 95, 2)
input_shape_radial = (95, 95, 8)
input_shape_cnn = (8, 8, 1)
input_shape_latitude = (8,)
input_shape_longitude = (8,)
input_shape_other = (9,)
# Build individual models
model_3d = build_tgru_model(input_shape=input_shape_3d)
model_radial = radial_structure_subnet(input_shape=input_shape_radial)
model_cnn = build_cnn_model(input_shape=input_shape_cnn)
# Define new inputs
input_latitude = Input(shape=input_shape_latitude ,name="latitude_input")
input_longitude = Input(shape=input_shape_longitude, name="longitude_input")
input_other = Input(shape=input_shape_other, name="other_input")
# Flatten the additional inputs
flat_latitude = layers.Dense(32,activation='relu')(input_latitude)
flat_longitude = layers.Dense(32,activation='relu')(input_longitude)
flat_other = layers.Dense(64,activation='relu')(input_other)
# Combine all outputs
combined = layers.concatenate([
model_3d.output,
model_radial.output,
model_cnn.output,
flat_latitude,
flat_longitude,
flat_other
])
# Add dense layers for final processing
x = layers.Dense(128, activation='relu')(combined)
x = layers.Dense(1, activation=None)(x)
# Create the final model
final_model = models.Model(
inputs=[model_3d.input, model_radial.input, model_cnn.input,
input_latitude, input_longitude, input_other ],
outputs=x
)
return final_model
import h5py
# with h5py.File(r"Trj_GRU.h5", 'r') as f:
# print(f.attrs.get('keras_version'))
# print(f.attrs.get('backend'))
# print("Model layers:", list(f['model_weights'].keys()))
model = build_combined_model() # Your original model building function
# Rebuild the model architecture
# Step 1: Build the full combined model (with 6 inputs)
# model = build_combined_model()
# Step 2: Call the model once with dummy data to build the weights
# import tensorflow as tf
dummy_input = [
tf.random.normal((1, 8, 95, 95, 2)), # reduced_images_test
tf.random.normal((1, 95, 95, 8)), # hov_m_test
tf.random.normal((1, 8, 8, 1)), # test_vmax_3d
tf.random.normal((1, 8)), # lat_test
tf.random.normal((1, 8)), # lon_test
tf.random.normal((1, 9)), # other_scalar_inputs
]
_ = model(dummy_input) # Build model by doing one forward pass
# Step 3: Load weights
model.load_weights("Trj_GRU.weights.h5") # Make sure this matches the architecture
def predict_trajgru(reduced_images_test,hov_m_test,test_vmax_3d,lat_test,lon_test,int_diff_test):
y=model.predict([reduced_images_test,hov_m_test,test_vmax_3d,lat_test,lon_test,int_diff_test ])
return y |