File size: 5,761 Bytes
365f709
1ee5104
 
 
365f709
1ee5104
 
365f709
059842e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
365f709
 
 
 
 
 
1ee5104
 
059842e
365f709
 
059842e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ee5104
 
 
 
 
 
 
 
 
059842e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffb8a4e
 
 
059842e
 
 
ffb8a4e
059842e
ffb8a4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
059842e
 
ffb8a4e
059842e
 
 
1ee5104
 
059842e
 
365f709
059842e
1ee5104
059842e
 
 
 
 
ffb8a4e
059842e
 
 
 
1ee5104
059842e
 
 
 
 
 
1ee5104
 
059842e
 
 
 
 
 
1ee5104
 
 
059842e
ffb8a4e
1ee5104
 
 
ffb8a4e
1ee5104
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import einops
import gradio as gr
import matplotlib.cm as cm
import numpy as np
import plotly.graph_objects as go
import torch
import torch.nn.functional as F

from rendering import estimate_surface_normal

DESCRIPTION = """
<div class="head">
<div class="title">LiDAR Data Synthesis with Denoising Diffusion Probabilistic Models</div>
<div class="authors">
<a href="https://kazuto1011.github.io/" target="_blank" rel="noopener"> Kazuto Nakashima</a>
&nbsp;&nbsp;&nbsp;
<a href="https://robotics.ait.kyushu-u.ac.jp/kurazume/en/" target="_blank" rel="noopener"> Ryo Kurazume</a>
</div>
<div class="affiliations">Kyushu University</div>
<div class="conference">ICRA 2024</div>
<div class="materials">
<a href="https://kazuto1011.github.io/r2dm">Project</a> |
<a href="https://arxiv.org/abs/2309.09256">Paper</a> |
<a href="https://github.com/kazuto1011/r2dm">Code</a>
</div>
<br>
<div class="description">
This is a demo of our paper "LiDAR Data Synthesis with Denoising Diffusion Probabilistic Models" presented at ICRA 2024.<br>
We propose <strong>R2DM</strong>, a continuous-time diffusion model for LiDAR data generation based on the equirectangular range/reflectance image representation.<br>
</div>
<br>
</div>
"""

RUN_LOCALLY = """
To run this demo locally:

```bash
git clone https://huggingface.co/spaces/kazuto1011/r2dm
```
```bash
cd r2dm
```
```bash
pip install -r requirements.txt
```
```bash
pip install gradio
```
```bash
gradio app.py
```
"""

THEME = gr.themes.Default(font=gr.themes.GoogleFont("Titillium Web"))


if torch.cuda.is_available():
    device = "cuda"
elif torch.backends.mps.is_available():
    device = "mps"
else:
    device = "cpu"

torch.set_grad_enabled(False)
torch.backends.cudnn.benchmark = True
device = torch.device(device)

model_dict = {
    "KITTI Raw (64x512)": torch.hub.load(
        "kazuto1011/r2dm",
        "pretrained_r2dm",
        config="r2dm-h-kittiraw-300k",
        device="cpu",
        show_info=False,
    ),
    "KITTI-360 (64x1024)": torch.hub.load(
        "kazuto1011/r2dm",
        "pretrained_r2dm",
        config="r2dm-h-kitti360-300k",
        device="cpu",
        show_info=False,
    ),
}


def colorize(tensor: torch.Tensor, cmap_fn=cm.turbo):
    colors = cmap_fn(np.linspace(0, 1, 256))[:, :3]
    colors = torch.from_numpy(colors).to(tensor)
    tensor = tensor.squeeze(1) if tensor.ndim == 4 else tensor
    ids = (tensor * 256).clamp(0, 255).long()
    tensor = F.embedding(ids, colors).permute(0, 3, 1, 2)
    tensor = tensor.mul(255).clamp(0, 255).byte()
    return tensor


def generate(num_steps: int, sampling_mode: str, dataset: str, progress=gr.Progress()):
    # model setup
    model, lidar_utils, _ = model_dict[dataset]
    model.to(device)
    lidar_utils.to(device)

    # sampling
    num_steps = int(num_steps)
    x = model.randn(1, *model.sampling_shape, device=model.device)
    steps = torch.linspace(1.0, 0.0, num_steps + 1, device=model.device)[None]
    for i in progress.tqdm(range(num_steps), desc="Generating LiDAR data"):
        step_t = steps[:, i]
        step_s = steps[:, i + 1]
        x = model.p_step(x, step_t, step_s, mode=sampling_mode.lower())

    # rendering point cloud
    x = lidar_utils.denormalize(x.clamp(-1, 1))
    depth = lidar_utils.revert_depth(x[:, [0]])
    rflct = x[:, [1]]
    point = lidar_utils.to_xyz(depth)
    color = (-estimate_surface_normal(point) + 1) / 2
    point = einops.rearrange(point, "1 c h w -> (h w) c").cpu().numpy()
    color = einops.rearrange(color, "1 c h w -> (h w) c").cpu().numpy()
    fig = go.Figure(
        data=[
            go.Scatter3d(
                x=-point[..., 0],
                y=-point[..., 1],
                z=point[..., 2],
                mode="markers",
                marker=dict(size=1, color=color),
            )
        ],
        layout=dict(
            scene=dict(
                xaxis=dict(showticklabels=False, visible=False),
                yaxis=dict(showticklabels=False, visible=False),
                zaxis=dict(showticklabels=False, visible=False),
                aspectmode="data",
            ),
            margin=dict(l=0, r=0, b=0, t=0),
            paper_bgcolor="rgba(0,0,0,0)",
            plot_bgcolor="rgba(0,0,0,0)",
        ),
    )
    depth = depth / lidar_utils.max_depth
    depth = colorize(depth, cm.turbo)[0].permute(1, 2, 0).cpu().numpy()
    rflct = colorize(rflct, cm.turbo)[0].permute(1, 2, 0).cpu().numpy()

    model.cpu()
    lidar_utils.cpu()
    return depth, rflct, fig


with gr.Blocks(css="./style.css", theme=THEME) as demo:
    gr.HTML(DESCRIPTION)

    with gr.Row(variant="panel"):
        with gr.Column():
            gr.Textbox(device, label="Running device")
            dataset = gr.Dropdown(
                choices=list(model_dict.keys()),
                value=list(model_dict.keys())[0],
                label="Dataset",
            )
            sampling_mode = gr.Dropdown(
                choices=["DDPM", "DDIM"],
                value="DDPM",
                label="Sampler",
            )
            num_steps = gr.Dropdown(
                choices=[2**i for i in range(5, 11)],
                value=32,
                label="Number of sampling steps (>256 is recommended)",
            )
            btn = gr.Button(value="Generate")

        with gr.Column():
            range_view = gr.Image(type="numpy", label="Range image")
            rflct_view = gr.Image(type="numpy", label="Reflectance image")
            point_view = gr.Plot(label="Point cloud")

    with gr.Row(variant="panel"):
        gr.Markdown(RUN_LOCALLY)

    btn.click(
        generate,
        inputs=[num_steps, sampling_mode, dataset],
        outputs=[range_view, rflct_view, point_view],
    )


demo.queue()
demo.launch()