File size: 9,126 Bytes
797d116
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import os
from typing import Optional
import numpy as np
import math
from PIL import Image

import torch
import torch.nn as nn
from torch.utils.data import DataLoader

from torchvision.transforms import (
    CenterCrop, 
    Compose, 
    Normalize, 
    RandomHorizontalFlip,
    RandomResizedCrop, 
    RandomRotation,
    RandomAffine,
    Resize, 
    ToTensor)

# from transformers import ViTImageProcessor
# from transformers import ViTForImageClassification
from transformers import AdamW
from transformers import AutoImageProcessor, ResNetForImageClassification
import lightning as L

from data import RetinopathyDataset, Split
from metrics import Metrics


def worker_init_fn(worker_id: int) -> None:
    """ Initialize workers in a way that they draw different
    random samples and do not repeat identical pseudorandom
    sequences of each other, which may be the case with Fork
    multiprocessing.

    Args:
        worker_id (int): id of a preprocessing worker process launched
        by one DDP training process. 
    """
    state = np.random.get_state()
    assert isinstance(state, tuple)
    assert isinstance(state[1], np.ndarray)
    seed_arr = state[1]
    seed_np = seed_arr[0] + worker_id
    np.random.seed(seed_np)
    seed_pt = seed_np + 1111
    torch.manual_seed(seed_pt)
    print(f"Setting numpy seed to {seed_np} and pytorch seed to {seed_pt} in worker {worker_id}")


class ViTLightningModule(L.LightningModule):
    """ Lightning Module that implements neural network training hooks. """
    def __init__(self, debug: bool) -> None:
        super().__init__()

        self.save_hyperparameters()

        np.random.seed(53)

        # pretrained_name = 'google/vit-base-patch16-224-in21k'
        # pretrained_name = 'google/vit-base-patch16-384-in21k'

        # pretrained_name = "microsoft/resnet-50"
        pretrained_name = "microsoft/resnet-34"

        # processor = ViTImageProcessor.from_pretrained(pretrained_name)
        processor = AutoImageProcessor.from_pretrained(pretrained_name)

        image_mean = processor.image_mean # type: ignore
        image_std = processor.image_std # type: ignore
        # size = processor.size["height"] # type: ignore
        # size = processor.size["shortest_edge"] # type: ignore
        size = 896 # 448

        normalize = Normalize(mean=image_mean, std=image_std)
        train_transforms = Compose(
            [
                # RandomRotation((-180, 180)),
                RandomAffine((-180, 180), shear=10),
                RandomResizedCrop(size, scale=(0.5, 1.0)),
                RandomHorizontalFlip(),
                ToTensor(),
                normalize,
            ]
        )
        val_transforms = Compose(
            [
                Resize(size),
                CenterCrop(size),
                ToTensor(),
                normalize,
            ]
        )

        self.dataset = RetinopathyDataset("retinopathy_data")

        # print_data_stats(self.dataset, "all_data")

        train_data, val_data = Split.make_splits(
            self.dataset,
            train_transforms=(train_transforms, torch.tensor),
            val_transforms=(val_transforms, torch.tensor),
            train_fraction=0.9,
            stratify_train=True,
            stratify_val=True,
            )

        assert len(set(train_data.indices).intersection(set(val_data.indices))) == 0

        label2id = {label: id for id, label in self.dataset.label_map.items()}

        num_classes = len(self.dataset.label_map)
        labelmap = self.dataset.label_map
        assert len(labelmap) == num_classes
        assert set(labelmap.keys()) == set(range(num_classes))

        train_batch_size = 4 if debug else 20
        val_batch_size = 4 if debug else 20

        num_gpus = torch.cuda.device_count()
        print(f"{num_gpus=}")

        num_cores = torch.get_num_threads()
        print(f"{num_cores=}")

        num_threads_per_gpu = max(1, int(math.ceil(num_cores / num_gpus))) \
            if num_gpus > 0 else 1

        num_workers = 1 if debug else num_threads_per_gpu
        print(f"{num_workers=}")

        self._train_dataloader = DataLoader(
            train_data,
            shuffle=True,
            num_workers=num_workers,
            persistent_workers=num_workers > 0,
            pin_memory=True,
            batch_size=train_batch_size,
            worker_init_fn=worker_init_fn,
            )
        self._val_dataloader = DataLoader(
            val_data,
            shuffle=False,
            num_workers=num_workers,
            persistent_workers=num_workers > 0,
            pin_memory=True,
            batch_size=val_batch_size,
            )

        # print_data_stats(self._val_dataloader, "val")
        # print_data_stats(self._train_dataloader, "train")

        img_batch, label_batch = next(iter(self._train_dataloader))
        assert isinstance(img_batch, torch.Tensor)
        assert isinstance(label_batch, torch.Tensor)
        print(f"{img_batch.shape=} {label_batch.shape=}")
        
        assert img_batch.shape == (train_batch_size, 3, size, size)
        assert label_batch.shape == (train_batch_size,)
        
        self.example_input_array = torch.randn_like(img_batch)

        # self._model = ViTForImageClassification.from_pretrained(
        #     pretrained_name,
        #     num_labels=len(self.dataset.label_map),
        #     id2label=self.dataset.label_map,
        #     label2id=label2id)

        self._model = ResNetForImageClassification.from_pretrained(
            pretrained_name,
            num_labels=len(self.dataset.label_map),
            id2label=self.dataset.label_map,
            label2id=label2id,
            ignore_mismatched_sizes=True)

        assert isinstance(self._model, nn.Module)

        self.train_metrics: Optional[Metrics] = None
        self.val_metrics: Optional[Metrics] = None

    @property
    def num_classes(self):
        return len(self.dataset.label_map)
    
    @property
    def labelmap(self):
        return self.dataset.label_map

    def forward(self, img_batch):
        outputs = self._model(img_batch) # type: ignore
        return outputs.logits
        
    def common_step(self, batch, batch_idx):
        img_batch, label_batch = batch

        logits = self(img_batch)

        criterion = nn.CrossEntropyLoss()
        loss = criterion(logits, label_batch)
        preds_batch = logits.argmax(-1)

        return loss, preds_batch, label_batch

    def on_train_epoch_start(self) -> None:
        self.train_metrics = Metrics(
            self.num_classes,
            self.labelmap,
            "train",
            self.log).to(self.device)

    def training_step(self, batch, batch_idx):
        loss, preds, labels = self.common_step(batch, batch_idx)
        assert self.train_metrics is not None
        self.train_metrics.update(loss, preds, labels)

        if False and batch_idx == 0:
            self._dump_train_images()

        return loss

    def _dump_train_images(self) -> None:
        """ Save augmented images to disk for inspection. """
        img_batch, label_batch = next(iter(self._train_dataloader))
        for i_img, (img, label) in enumerate(zip(img_batch, label_batch)):
            img_np = img.cpu().numpy()
            denorm_np = (img_np - img_np.min()) / (img_np.max() - img_np.min())
            img_uint8 = (255 * denorm_np).astype(np.uint8)
            pil_img = Image.fromarray(np.transpose(img_uint8, (1, 2, 0)))
            if self.logger is not None and self.logger.log_dir is not None:
                assert isinstance(self.logger.log_dir, str)
                os.makedirs(self.logger.log_dir, exist_ok=True)
                path = os.path.join(self.logger.log_dir,
                                    f"img_{i_img:02d}_{label.item()}.png")
                pil_img.save(path)

    def on_train_epoch_end(self) -> None:
        assert self.train_metrics is not None
        self.train_metrics.log()
        assert self.logger is not None
        if self.logger.log_dir is not None:
            path = os.path.join(self.logger.log_dir, "inference")
            self.save_checkpoint_dk(path)
    
    def save_checkpoint_dk(self, dirpath: str) -> None:
        if self.global_rank == 0:
            self._model.save_pretrained(dirpath)

    def validation_step(self, batch, batch_idx):
        loss, preds, labels = self.common_step(batch, batch_idx)
        assert self.val_metrics is not None
        self.val_metrics.update(loss, preds, labels)
        return loss

    def on_validation_epoch_start(self) -> None:
        self.val_metrics = Metrics(
            self.num_classes,
            self.labelmap,
            "val",
            self.log).to(self.device)
    
    def on_validation_epoch_end(self) -> None:
        assert self.val_metrics is not None
        self.val_metrics.log()

    def configure_optimizers(self):
        # No WD is the same as 1e-3 and better than 1e-2
        # LR 1e-3 is worse than 1e-4 (without LR scheduler)
        return AdamW(self.parameters(),
                     lr=1e-4,
                     )