File size: 944 Bytes
060541a
 
244b584
56cb03d
060541a
56cb03d
060541a
 
 
6f74060
060541a
 
c480dfd
 
060541a
 
56cb03d
 
 
244b584
060541a
6f74060
 
 
 
060541a
6f74060
 
 
244b584
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import torch
from transformers import pipeline
import gradio as gr
import pandas as pd
from datasets import Dataset

# Enable SafeTensors if available
if torch.__version__ >= "1.10":
    torch.set_safety_enabled(True)

# Load the model
model_nm = 'microsoft/deberta-v3-small'
classifier = pipeline("text-classification", model=model_nm)

# Read and preprocess data
df = pd.read_csv("path/to/train.csv")  # Replace "path/to/train.csv" with the actual path
df.describe(include='object')
df['input'] = 'TEXT1: ' + df.context + '; TEXT2: ' + df.target + '; ANC1: ' + df.anchor
ds = Dataset.from_pandas(df)

# Define prediction function
def predict_text(input_text):
    prediction = classifier(input_text)
    return prediction

# Define Gradio interface
text_input = gr.inputs.Textbox(lines=7, label="Unesite tekst")
output_text = gr.outputs.Textbox(label="Predikcija")
gr.Interface(predict_text, inputs=text_input, outputs=output_text).launch()