File size: 2,076 Bytes
90aa8b9
 
d79bce7
8b228ab
 
 
d79bce7
 
 
 
 
8b228ab
d79bce7
8b228ab
d79bce7
 
 
8b228ab
 
 
 
 
d79bce7
8b228ab
d79bce7
8b228ab
d79bce7
 
 
8b228ab
 
d79bce7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import gradio as gr
import torch
from diffusers import StableDiffusionPipeline

def image_generation(prompt):
    device = "cuda" if torch.cuda.is_available() else "cpu"
    pipeline = StableDiffusionPipeline.from_pretrained(
        "stabilityai/stable-diffusion-3-medium",
        torch_dtype=torch.float16 if device == "cuda" else torch.float32,
    )
    #pipeline.to(device)
    pipeline.enable_model_cpu_offload()
    
    image = pipeline(
        prompt=prompt,
        negative_prompt="blurred, ugly, watermark, low resolution, blurry, nude",
        num_inference_steps=40,
        height=1024,
        width=1024,
        guidance_scale=8.0
    ).images[0]

    return image

interface = gr.Interface(
    fn=image_generation,
    inputs=gr.Textbox(lines=2, placeholder="Enter Your Prompt ..."),
    outputs=gr.Image(type="pil"),
    title="AI Text Generation By SD-3M"
)

interface.launch()







# import gradio as gr
# import torch
# from diffusers import StableDiffusers3Pipeline

# def image_generation(prompt):
#     device = "cuda" if torch.cuda.is_available() else "cpu"
#     pipeline = StableDiffusers3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers",
#                                                         torch_dtype=torch.float16 if device == "cuda" else torch.float32,
#                                                         text_encoder_3 = None,
#                                                         tokenizer_3 = None)
#     # pipeline.to(device)
#     pipeline.enable_model_cpu_offload()

#     image = pipeline(
#         prompt = prompt,
#         negative_prompt = "blurred, ugly, watermark, low resolution, blurry, nude",
#         num_inference_steps = 40,
#         height=1024,
#         width=1024,
#         guidance_scale=8.0
#     ).images[0]

#     image.show()

# interface= gr.interface(
#     fn=image_generation,
#     inputs = gr.Textbox(lines="2", placeholder="Enter Your Prompt ..."),
#     outputs = gr.Image(type="pil"),
#     title = "AI Text Generation By SD-3M"
# )

# interface.launch()