File size: 5,390 Bytes
490705b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7565b86
490705b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad9c714
490705b
ad9c714
 
 
 
 
 
 
 
 
 
490705b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
416fa5e
 
 
490705b
 
 
 
 
 
 
1b38604
490705b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from turtle import title
import gradio as gr

import git
import os
os.system('git clone https://github.com/Edresson/Coqui-TTS -b multilingual-torchaudio-SE TTS')
os.system('pip install -q -e TTS/')
os.system('pip install -q torchaudio==0.9.0')

import sys
TTS_PATH = "TTS/"

# add libraries into environment
sys.path.append(TTS_PATH) # set this if TTS is not installed globally

import os
import string
import time
import argparse
import json

import numpy as np
import IPython
from IPython.display import Audio


import torch

from TTS.tts.utils.synthesis import synthesis
#from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
try:
  from TTS.utils.audio import AudioProcessor
except:
  from TTS.utils.audio import AudioProcessor


from TTS.tts.models import setup_model
from TTS.config import load_config
from TTS.tts.models.vits import *  

OUT_PATH = 'out/'

# create output path
os.makedirs(OUT_PATH, exist_ok=True)

# model vars 
MODEL_PATH = '/home/user/app/best_model_latest.pth.tar'
CONFIG_PATH = '/home/user/app/config.json'
TTS_LANGUAGES = "/home/user/app/language_ids.json"
TTS_SPEAKERS = "/home/user/app/speakers.json"
USE_CUDA = torch.cuda.is_available()  

# load the config
C = load_config(CONFIG_PATH)


# load the audio processor
ap = AudioProcessor(**C.audio)

speaker_embedding = None

C.model_args['d_vector_file'] = TTS_SPEAKERS
C.model_args['use_speaker_encoder_as_loss'] = False

model = setup_model(C)
model.language_manager.set_language_ids_from_file(TTS_LANGUAGES)
# print(model.language_manager.num_languages, model.embedded_language_dim)
# print(model.emb_l)
cp = torch.load(MODEL_PATH, map_location=torch.device('cpu'))
# remove speaker encoder
model_weights = cp['model'].copy()
for key in list(model_weights.keys()):
  if "speaker_encoder" in key:
    del model_weights[key]

model.load_state_dict(model_weights)


model.eval()

if USE_CUDA:
    model = model.cuda()

# synthesize voice
use_griffin_lim = False

os.system('pip install -q pydub ffmpeg-normalize')

CONFIG_SE_PATH = "config_se.json"
CHECKPOINT_SE_PATH = "SE_checkpoint.pth.tar"

from TTS.tts.utils.speakers import SpeakerManager
from pydub import AudioSegment
import librosa

SE_speaker_manager = SpeakerManager(encoder_model_path=CHECKPOINT_SE_PATH, encoder_config_path=CONFIG_SE_PATH, use_cuda=USE_CUDA)

def compute_spec(ref_file):
  y, sr = librosa.load(ref_file, sr=ap.sample_rate)
  spec = ap.spectrogram(y)
  spec = torch.FloatTensor(spec).unsqueeze(0)
  return spec
  

    
def greet(Text,Voicetoclone,VoiceMicrophone):
    text= "%s" % (Text)
    if Voicetoclone is not None:
      reference_files= "%s" % (Voicetoclone)
      print("path url")
      print(Voicetoclone)
      sample= str(Voicetoclone)
    else:
      reference_files= "%s" % (VoiceMicrophone)
      print("path url")
      print(VoiceMicrophone)
      sample= str(VoiceMicrophone)
    size= len(reference_files)*sys.getsizeof(reference_files)
    size2= size / 1000000
    if (size2 > 0.012) or len(text)>2000:
      message="File is greater than 30mb or Text inserted is longer than 2000 characters. Please re-try with smaller sizes."
      print(message)
      raise SystemExit("File is greater than 30mb. Please re-try or Text inserted is longer than 2000 characters. Please re-try with smaller sizes.")
    else:
      os.system('ffmpeg-normalize $sample -nt rms -t=-27 -o $sample -ar 16000 -f')
      reference_emb = SE_speaker_manager.compute_d_vector_from_clip(reference_files)
      model.length_scale = 1  # scaler for the duration predictor. The larger it is, the slower the speech.
      model.inference_noise_scale = 0.3 # defines the noise variance applied to the random z vector at inference.
      model.inference_noise_scale_dp = 0.3 # defines the noise variance applied to the duration predictor z vector at inference.
      text = text
      model.language_manager.language_id_mapping
      language_id = 0
    
      print(" > text: {}".format(text))
      wav, alignment, _, _ = synthesis(
                        model,
                        text,
                        C,
                        "cuda" in str(next(model.parameters()).device),
                        ap,
                        speaker_id=None,
                        d_vector=reference_emb,
                        style_wav=None,
                        language_id=language_id,
                        enable_eos_bos_chars=C.enable_eos_bos_chars,
                        use_griffin_lim=True,
                        do_trim_silence=False,
                    ).values()
      print("Generated Audio")
      IPython.display.display(Audio(wav, rate=ap.sample_rate))
      #file_name = text.replace(" ", "_")
      #file_name = file_name.translate(str.maketrans('', '', string.punctuation.replace('_', ''))) + '.wav'
      file_name="Audio.wav"
      out_path = os.path.join(OUT_PATH, file_name)
      print(" > Saving output to {}".format(out_path))
      ap.save_wav(wav, out_path)
      return out_path

demo = gr.Interface(
    fn=greet, 
    inputs=[gr.inputs.Textbox(label='What would you like the voice to say? (max. 2000 characters per request)'),gr.Audio(type="filepath",         source="upload",label='Please upload a voice to clone (max. 30mb)'),gr.Audio(source="microphone", type="filepath", streaming=True)],
    outputs="audio",
    title="Bilal's Voice Cloning Tool"
    )
demo.launch()