Spaces:
Running
Running
File size: 5,081 Bytes
eed818f fc07358 eed818f bb48749 0d3caec 17f5d0b bb48749 eed818f 0d3caec 17f5d0b 0d3caec 17f5d0b 0d3caec 64b9441 0d3caec 64b9441 0d3caec 64b9441 0d3caec 64b9441 7e3d8f5 07f5040 341bd5d 07f5040 341bd5d 07f5040 341bd5d 07f5040 341bd5d 07f5040 341bd5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
# import streamlit as st
# from transformers import pipeline
# # pipe=pipeline("sentiment-analysis")
# # col1, col2 = st.columns(2)
# # with col1:
# # x=st.button("Sentiment Analysis")
# # with col2:
# # y=st.button("Text Summarization")
# # if x:
# # t=st.text_input("Enter the Text")
# # st.write(pipe(t))
# # if y:
# t1=st.text_input("Enter the Text for Summarization")
# st.write(summarizer(t1))
#from transformers import AutoTokenizer, AutoModel
# import streamlit as st
#tokenizer = AutoTokenizer.from_pretrained("llmware/industry-bert-insurance-v0.1")
# #model = AutoModel.from_pretrained("llmware/industry-bert-insurance-v0.1")
# # Use a pipeline as a high-level helper
# from transformers import pipeline
# #pipe = pipeline("feature-extraction")
# t=st.text_input("Enter the Text")
# pipe = pipeline("summarization")
# st.write(pipe(t))
# import pandas as pd
# import numpy as np
# from ydata_synthetic.synthesizers.regular import RegularSynthesizer
# from ydata_synthetic.synthesizers import ModelParameters, TrainParameters
# import streamlit as st
# from os import getcwd
# text_file=st.file_uploader("Upload the Data File")
# st.write("-------------------------")
# if text_file is not None:
# df=pd.read_csv(text_file)
# dd_list=df.columns
# cat_cols=st.multiselect("Select the Categorical Columns",dd_list)
# num_cols=st.multiselect("Select the Numerical Columns",dd_list)
# Output_file=st.text_input('Enter Output File Name')
# s=st.number_input('Enter the Sample Size',1000)
# OP=Output_file + '.csv'
# sub=st.button('Submit')
# if sub:
# batch_size = 50
# epochs = 3
# learning_rate = 2e-4
# beta_1 = 0.5
# beta_2 = 0.9
# ctgan_args = ModelParameters(batch_size=batch_size,
# lr=learning_rate,
# betas=(beta_1, beta_2))
# train_args = TrainParameters(epochs=epochs)
# synth = RegularSynthesizer(modelname='ctgan', model_parameters=ctgan_args)
# synth.fit(data=df, train_arguments=train_args, num_cols=num_cols, cat_cols=cat_cols)
# df_syn = synth.sample(s)
# df_syn.to_csv(OP)
# c=getcwd()
# c=c + '/' + OP
# with open(c,"rb") as file:
# st.download_button(label=':blue[Download]',data=file,file_name=OP,mime="image/png")
# st.success("Thanks for using the app !!!")
# import torch
# import streamlit as st
# from transformers import AutoModelForCausalLM, AutoTokenizer
# #torch.set_default_device("cuda")
# model = AutoModelForCausalLM.from_pretrained("soulhq-ai/phi-2-insurance_qa-sft-lora", torch_dtype="auto", trust_remote_code=True)
# tokenizer = AutoTokenizer.from_pretrained("soulhq-ai/phi-2-insurance_qa-sft-lora", trust_remote_code=True)
# i=st.text_input('Prompt', 'Life of Brian')
# #inputs = tokenizer('''### Instruction: What Does Basic Homeowners Insurance Cover?\n### Response: ''', return_tensors="pt", return_attention_mask=False)
# inputs = tokenizer(i, return_tensors="pt", return_attention_mask=False)
# outputs = model.generate(**inputs, max_length=1024)
# text = tokenizer.batch_decode(outputs)[0]
# print(text)
# import torch
# import streamlit as st
# from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# model_name="facebook/blenderbot-400M-distill"
# model=AutoModelForSeq2SeqLM.from_pretrained(model_name)
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# ch=[]
# def chat():
# h_s="\n".join(ch)
# i=st.text_input("enter")
# i_s=tokenizer.encode_plus(h_s,i,return_tensors="pt")
# outputs=model.generate(**i_s,max_length=60)
# response=tokenizer.decode(outputs[0],skip_special_tokens=True).strip()
# ch.append(i)
# ch.append(response)
# return response
# if __name__ == "__main__":
# chat()
import streamlit as st
from streamlit_chat import message as st_message
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
@st.experimental_singleton
def get_models():
# Load the model and the tokenizer
tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot_small-90M")
model = AutoModelForSeq2SeqLM.from_pretrained(
"facebook/blenderbot_small-90M")
return tokenizer, model
if "history" not in st.session_state:
st.session_state.history = []
st.title("Blenderbot")
def generate_answer():
tokenizer, model = get_models()
user_message = st.session_state.input_text
inputs = tokenizer(st.session_state.input_text, return_tensors="pt")
result = model.generate(**inputs)
message_bot = tokenizer.decode(
result[0], skip_special_tokens=True
) # decode the result to a string
st.session_state.history.append({"message": user_message, "is_user": True})
st.session_state.history.append({"message": message_bot, "is_user": False})
st.text_input("Tap to chat with the bot",
key="input_text", on_change=generate_answer)
for chat in st.session_state.history:
st_message(**chat) |