YOLOR / darknet /README.md
karolmajek's picture
app
1a1ee1f
|
raw
history blame
1.86 kB

Model Zoo

Model Test Size APval AP50val AP75val APSval APMval APLval batch1 throughput
YOLOv4-CSP 640 49.1% 67.7% 53.8% 32.1% 54.4% 63.2% 76 fps
YOLOR-CSP 640 49.2% 67.6% 53.7% 32.9% 54.4% 63.0% -
YOLOv4-CSP-X 640 50.9% 69.3% 55.4% 35.3% 55.8% 64.8% 53 fps
YOLOR-CSP-X 640 51.1% 69.6% 55.7% 35.7% 56.0% 65.2% -

Installation

https://github.com/AlexeyAB/darknet

Docker environment (recommended)

Expand
# get code
git clone https://github.com/AlexeyAB/darknet

# create the docker container, you can change the share memory size if you have more.
nvidia-docker run --name yolor -it -v your_coco_path/:/coco/ -v your_code_path/:/yolor --shm-size=64g nvcr.io/nvidia/pytorch:21.02-py3

# apt install required packages
apt update
apt install -y libopencv-dev

# edit Makefile
#GPU=1
#CUDNN=1
#CUDNN_HALF=1
#OPENCV=1
#AVX=1
#OPENMP=1
#LIBSO=1
#ZED_CAMERA=0
#ZED_CAMERA_v2_8=0
#
#USE_CPP=0
#DEBUG=0
#
#ARCH= -gencode arch=compute_52,code=[sm_70,compute_70] \
#      -gencode arch=compute_61,code=[sm_75,compute_75] \
#      -gencode arch=compute_61,code=[sm_80,compute_80] \
#      -gencode arch=compute_61,code=[sm_86,compute_86]
#
#...

# build
make -j8

Testing

To reproduce inference speed, using:

CUDA_VISIBLE_DEVICES=0 ./darknet detector demo cfg/coco.data cfg/yolov4-csp.cfg weights/yolov4-csp.weights source/test.mp4 -dont_show -benchmark