File size: 11,144 Bytes
fdc1efd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
from abc import ABC, abstractmethod
from typing import Tuple
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import wandb
from torch.utils.data import DataLoader
from tqdm.autonotebook import tqdm
import modeling.loss as loss_module
import modeling.metrics as metrics_module
from modeling.loss import HardDistillationLoss
from modeling.models import freeze, layerwise_lr_decay
from modeling.utils import init_obj
class BaseLearner(ABC):
"""
Abstract base class for a learner.
:param train_dl: DataLoader for training data
:type train_dl: Type[DataLoader]
:param valid_dl: DataLoader for validation data
:type valid_dl: Type[DataLoader]
:param model: Model to be trained
:type model: Type[nn.Module]
:param config: Configuration object
:type config: Any
"""
def __init__(self, train_dl: DataLoader, valid_dl: DataLoader, model: nn.Module, config):
self.train_dl = train_dl
self.valid_dl = valid_dl
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.model = model.to(self.device)
self.config = config
@abstractmethod
def fit(
self,
):
"""Abstract method for fitting the model."""
pass
@abstractmethod
def _train_epoch(
self,
):
"""Abstract method for training the model for one epoch."""
pass
@abstractmethod
def _test_epoch(
self,
):
"""Abstract method for testing the model for one epoch."""
pass
class Learner(BaseLearner):
def __init__(self, train_dl: DataLoader, valid_dl: DataLoader, model: nn.Module, config):
"""
A class that inherits from the BaseLearner class and represents a learner object.
:param train_dl: DataLoader for training data
:type train_dl: DataLoader
:param valid_dl: DataLoader for validation data
:type valid_dl: DataLoader
:param model: Model to be trained
:type model: nn.Module
:param config: Configuration object
:type config: Any
"""
super().__init__(train_dl, valid_dl, model, config)
self.model = torch.nn.DataParallel(module=self.model, device_ids=list(range(config.num_gpus)))
self.loss_fn = init_obj(self.config.loss, loss_module)
params = layerwise_lr_decay(self.config, self.model)
self.optimizer = init_obj(self.config.optimizer, optim, params)
self.scheduler = init_obj(
self.config.scheduler,
optim.lr_scheduler,
self.optimizer,
max_lr=[param["lr"] for param in params],
epochs=self.config.epochs,
steps_per_epoch=int(np.ceil(len(train_dl) / self.config.num_accum)),
)
self.verbose = self.config.verbose
self.metrics = MetricTracker(self.config.metrics, self.verbose)
self.scaler = torch.cuda.amp.GradScaler()
self.train_step = 0
self.test_step = 0
def fit(self, model_name: str = "model"):
"""
Method to train the model.
:param model_name: Name of the model to be saved, defaults to "model"
:type model_name: str, optional
"""
loop = tqdm(range(self.config.epochs), leave=False)
for epoch in loop:
train_loss = self._train_epoch()
val_loss = self._test_epoch()
wandb.log({"train_loss": train_loss, "val_loss": val_loss, "epoch": epoch + 1})
if self.verbose:
print(f"| EPOCH: {epoch+1} | train_loss: {train_loss:.3f} | val_loss: {val_loss:.3f} |\n")
self.metrics.display()
if self.config.save_last_checkpoint:
torch.save(self.model.module.state_dict(), f"{model_name}.pth")
def _train_epoch(self, distill: bool = False):
"""
Method to perform one epoch of training.
:param distill: Flag to indicate if knowledge distillation is used, defaults to False
:type distill: bool, optional
:return: Average training loss for the epoch
:rtype: float
"""
if distill:
print("Distilling knowledge...", flush=True)
loop = tqdm(self.train_dl, leave=False)
self.model.train()
num_batches = len(self.train_dl)
train_loss = 0
for idx, (xb, yb) in enumerate(loop):
xb = xb.to(self.device)
yb = yb.to(self.device)
# forward
with torch.autocast(device_type=self.device, dtype=torch.float16, enabled=not distill):
predictions = self.model(xb)
if distill:
loss = self.KDloss_fn(xb, predictions, yb)
else:
loss = self.loss_fn(predictions, yb)
loss /= self.config.num_accum
# backward
self.scaler.scale(loss).backward()
wandb.log({f"lr_param_group_{i}": lr for i, lr in enumerate(self.scheduler.get_last_lr())})
if ((idx + 1) % self.config.num_accum == 0) or (idx + 1 == num_batches):
self.scaler.step(self.optimizer)
self.scaler.update()
self.scheduler.step()
self.optimizer.zero_grad()
# update loop
loop.set_postfix(loss=loss.item())
self.train_step += 1
wandb.log({"train_loss_per_batch": loss.item(), "train_step": self.train_step})
train_loss += loss.item()
if distill:
if ((idx + 1) % 2500 == 0) and not (idx + 1 == num_batches):
val_loss = self._test_epoch()
wandb.log({"val_loss": val_loss})
self.model.train()
train_loss /= num_batches
return train_loss
def _test_epoch(self):
"""
Method to perform one epoch of validation/testing.
:return: Average validation/test loss for the epoch
:rtype: float
"""
loop = tqdm(self.valid_dl, leave=False)
self.model.eval()
num_batches = len(self.valid_dl)
preds = []
targets = []
test_loss = 0
with torch.no_grad():
for xb, yb in loop:
xb, yb = xb.to(self.device), yb.to(self.device)
pred = self.model(xb)
loss = self.loss_fn(pred, yb).item()
self.test_step += 1
wandb.log({"valid_loss_per_batch": loss, "test_step": self.test_step})
test_loss += loss
pred = torch.sigmoid(pred)
preds.extend(pred.cpu().numpy())
targets.extend(yb.cpu().numpy())
preds, targets = np.array(preds), np.array(targets)
self.metrics.update(preds, targets)
test_loss /= num_batches
return test_loss
class KDLearner(Learner):
"""
Knowledge Distillation Learner class for training a student model with knowledge distillation.
:param train_dl: Train data loader
:type train_dl: DataLoader
:param valid_dl: Validation data loader
:type valid_dl: DataLoader
:param student_model: Student model to be trained
:type student_model: nn.Module
:param teacher: Teacher model for knowledge distillation
:type teacher: nn.Module
:param thresholds: Thresholds for HardDistillationLoss
:type thresholds: List[float]
:param config: Configuration object for training
:type config: Config
"""
def __init__(self, train_dl, valid_dl, student_model, teacher, thresholds, config):
super().__init__(train_dl, valid_dl, student_model, config)
self.teacher = nn.DataParallel(freeze(teacher).to(self.device))
self.KDloss_fn = HardDistillationLoss(self.teacher, self.loss_fn, thresholds, self.device)
self.scaler = torch.cuda.amp.GradScaler(enabled=False)
def _train_epoch(self):
"""
Method to perform one epoch of training with knowledge distillation.
:return: Average training loss for the epoch
:rtype: float
"""
return super()._train_epoch(distill=True)
class MetricTracker:
"""
Metric Tracker class for tracking evaluation metrics during model validation.
This class is used to track and display evaluation metrics during model validation.
It keeps track of the results of the provided metric functions for each validation batch,
and logs them to Weights & Biases using wandb.log(). The display() method can be used
to print the tracked metric results, if verbose is set to True during initialization.
:param metrics: List of metric functions to track
:type metrics: List[Callable]
:param verbose: Flag to indicate whether to print the results or not, defaults to True
:type verbose: bool, optional
"""
def __init__(self, metrics, verbose: bool = True):
self.metrics_fn = [getattr(metrics_module, metric) for metric in metrics]
self.verbose = verbose
self.result = None
def update(self, preds, targets):
"""
Update the metric tracker with the latest predictions and targets.
:param preds: Model predictions
:type preds: torch.Tensor
:param targets: Ground truth targets
:type targets: torch.Tensor
"""
self.result = {metric.__name__: metric(preds, targets) for metric in self.metrics_fn}
wandb.log(self.result)
def display(self):
"""Display the tracked metric results."""
for k, v in self.result.items():
print(f"{k}: {v:.2f}")
def get_preds(data: DataLoader, model: nn.Module, device: str = "cpu") -> Tuple[np.ndarray, np.ndarray]:
"""
Get predictions and targets from a data loader and a PyTorch model.
:param data: A PyTorch DataLoader containing the data to predict on.
:type data: torch.utils.data.DataLoader
:param model: A PyTorch model to use for predictions.
:type model: torch.nn.Module
:param device: The device to use for predictions (default is "cpu").
:type device: str
:raises TypeError: If any of the input arguments is of an incorrect type.
:return: A tuple containing two NumPy arrays: the predictions and the targets.
:rtype: Tuple[numpy.ndarray, numpy.ndarray]
"""
if not isinstance(data, DataLoader):
raise TypeError("The 'data' argument must be a PyTorch DataLoader.")
if not isinstance(model, nn.Module):
raise TypeError("The 'model' argument must be a PyTorch model.")
if not isinstance(device, str):
raise TypeError("The 'device' argument must be a string.")
loop = tqdm(data, leave=False)
model = model.to(device)
model.eval()
preds = []
targets = []
with torch.no_grad():
for xb, yb in loop:
xb, yb = xb.to(device), yb.to(device)
pred = model(xb)
pred = torch.sigmoid(pred)
preds.extend(pred.cpu().numpy())
targets.extend(yb.cpu().numpy())
preds, targets = np.array(preds), np.array(targets)
return preds, targets
|