Spaces:
Sleeping
Sleeping
File size: 35,806 Bytes
df2fdde eb24333 df2fdde eb24333 df2fdde b6057fe df2fdde b6057fe df2fdde eb24333 df2fdde eb24333 b6057fe df2fdde b6057fe df2fdde b6057fe df2fdde b6057fe df2fdde b6057fe df2fdde eb24333 df2fdde b6057fe eb24333 df2fdde b6057fe df2fdde eb24333 df2fdde eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe df2fdde b6057fe df2fdde a9051ac b6057fe df2fdde eb24333 b6057fe df2fdde b6057fe df2fdde eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe eb24333 b6057fe df2fdde b6057fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 |
import os
import json
import math
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import dash
from dash import dcc, html, Input, Output, State, exceptions, no_update
# Assume name is defined, e.g., name = 'main'
try:
name
except NameError:
name = '__main__' # Define name if not running directly
app = dash.Dash(name)
# ================== 数据准备 (Data Preparation) ==================
# (Keep the existing data preparation code)
# Define the path relative to the script's location
# Use os.path.join for better cross-platform compatibility
base_dir = os.path.dirname(os.path.abspath(__file__)) if '__file__' in globals() else '.'
results_dir = os.path.join(base_dir, "test_results_report")
file_names = [
'GPT-4o_statistics.txt',
'GPT-4o-mini_statistics.txt',
'Llama-3.1-8B-ft_statistics.txt',
'Llama-3.1-8B_statistics.txt',
'Llama-3.1-70B_statistics.txt',
'Mixtral-8x7B_statistics.txt',
'Qwen2-72B_statistics.txt',
'Qwen2-7B_statistics.txt',
'Llama-2-7b-hf_statistics.txt',
'Llama-2-7b-hf-5-shot_statistics.txt',
'Llama-3.1-8B-5-shot_statistics.txt',
'Llama-3.1-70B-5-shot_statistics.txt',
'Mixtral-8x7B-v0.1-5-shot_statistics.txt',
'Qwen2-7B-5-shot_statistics.txt',
'Qwen2-72B-5-shot_statistics.txt',
]
# Ensure the directory and at least one file exists for key loading
if not os.path.exists(results_dir):
print(f"Error: Results directory not found at {results_dir}")
# Consider exiting or providing default keys if essential
keys = [] # Provide empty keys as fallback
else:
first_file_path = os.path.join(results_dir, file_names[0] if file_names else '')
if not file_names or not os.path.exists(first_file_path):
print(f"Warning: First statistics file not found or file_names list is empty.")
keys = [] # Provide empty keys as fallback
else:
# 从一个文件获取全部key, 仅用于演示 (Get all keys from one file, for demo only)
try:
with open(first_file_path, "r") as f:
results = json.load(f)
# Ensure 'exact_match' exists before accessing keys
if "exact_match" in results and isinstance(results["exact_match"], dict):
keys = list(results["exact_match"].keys())
else:
print(f"Warning: 'exact_match' key not found or not a dictionary in {first_file_path}. Setting keys to empty.")
keys = []
except Exception as e:
print(f"Error loading keys from {first_file_path}: {e}")
keys = [] # Provide empty keys on error
def load_data(file_name, main_metric="exact_match", r=(0, len(keys))):
# --- Keep existing load_data function ---
tasks = []
well_learned_digit = []
has_performance_digit = []
in_domain = []
out_domain = []
short_range = []
medium_range = []
long_range = []
very_long_range = []
metrics_to_extract = [
"well_learned_digit", "has_performance_digit", "in_domain", "out_domain",
"short_range", "medium_range", "long_range", "very_long_range"
]
file_path = os.path.join(results_dir, file_name)
if not os.path.exists(file_path):
print(f"Warning: File not found {file_path}, skipping.")
# Return empty lists of the correct structure
return tuple([[] for _ in range(len(metrics_to_extract) + 1)])
try:
with open(file_path, "r") as f:
stats = json.load(f)
except Exception as e:
print(f"Error reading or parsing {file_path}: {e}")
# Return empty lists of the correct structure
return tuple([[] for _ in range(len(metrics_to_extract) + 1)])
if main_metric not in stats:
print(f"Warning: Metric '{main_metric}' not found in {file_name}, skipping.")
return tuple([[] for _ in range(len(metrics_to_extract) + 1)])
stats_exm = stats[main_metric]
# Ensure stats_exm is a dictionary before proceeding
if not isinstance(stats_exm, dict):
print(f"Warning: Metric '{main_metric}' in {file_name} is not a dictionary. Skipping.")
return tuple([[] for _ in range(len(metrics_to_extract) + 1)])
# Check if keys exist before accessing
valid_keys = [k for k in keys[r[0]:r[1]] if k in stats_exm]
if len(valid_keys) < len(keys[r[0]:r[1]]):
print(f"Warning: Some keys not found in {main_metric} of {file_name}")
for key in valid_keys: # Use only valid keys
try:
words = key.split("_")
if len(words) < 4: # Basic check for expected format
print(f"Warning: Unexpected key format '{key}' in {file_name}, skipping.")
continue
domain_3 = words.pop()
domain_2 = words.pop()
domain_1 = words.pop()
task = " ".join(list(map(str.capitalize, words)))
tasks.append(f"{task}<br />{domain_1}")
key_data = stats_exm[key]
# Ensure key_data is a dictionary
if not isinstance(key_data, dict):
print(f"Warning: Data for key '{key}' in {file_name} is not a dictionary. Appending zeros.")
well_learned_digit.append(0)
has_performance_digit.append(0)
in_domain.append(0)
out_domain.append(0)
short_range.append(0)
medium_range.append(0)
long_range.append(0)
very_long_range.append(0)
continue # Skip to next key
# Safely append metrics, using None or 0 if a metric is missing for a specific key
well_learned_digit.append(key_data.get("well_learned_digit", 0))
has_performance_digit.append(key_data.get("has_performance_digit", 0))
in_domain.append(key_data.get("in_domain", 0))
out_domain.append(key_data.get("out_domain", 0))
short_range.append(key_data.get("short_range", 0))
medium_range.append(key_data.get("medium_range", 0))
long_range.append(key_data.get("long_range", 0))
very_long_range.append(key_data.get("very_long_range", 0))
except Exception as e:
print(f"Error processing key '{key}' in {file_name}: {e}")
# Attempt to keep lists aligned by appending a default value, or skip the key entirely
# For simplicity, let's skip if parsing fails badly
if len(tasks) > len(short_range): # Check if appending failed mid-key
try:
tasks.pop() # Remove the task name if metrics failed
except IndexError:
pass # Handle case where tasks might be empty
return (
tasks, well_learned_digit, has_performance_digit,
in_domain, out_domain,
short_range, medium_range, long_range, very_long_range
)
# 示例任务 (Example Tasks)
# (Keep existing task lists)
intTasks = [
"Add","Sub","Max","Max Hard","Multiply Hard","Multiply Easy",
"Digit Max","Digit Add","Get Digit","Length","Truediv","Floordiv","Mod",
"Mod Easy","Count","Sig","To Scient"
]
floatTasks = [
"Add","Sub","Max","Max Hard","Multiply Hard","Multiply Easy",
"Digit Max","Digit Add","Get Digit","Length","To Scient"
]
fractionTasks = [
"Add","Add Easy","Sub","Max","Multiply Hard","Multiply Easy","Truediv","To Float"
]
sciTasks = [
"Add","Sub","Max","Max Hard","Multiply Hard","Multiply Easy","To Float"
]
# ================== 核心绘图函数 (Core Plotting Function) ==================
# (Keep the corrected plot function from the previous step)
def plot(main_metric, selected_files, selected_metrics, selected_tasks, r):
colors = [
"#2C6344","#5F9C61","#A4C97C","#61496D","#B092B6",
"#CAC1D4","#308192","#E38D26","#F1CC74","#C74D26",
"#5EA7B8","#AED2E2"
]
colors.reverse()
M = len(selected_files)
T = len(selected_tasks)
if M == 0 or T == 0 or not selected_metrics: # Added check for selected_metrics
fig = go.Figure()
fig.update_layout(
title="Please select models, tasks, and at least one range.",
xaxis={'visible': False},
yaxis={'visible': False},
annotations=[{
'text': "No data to display. Check selections.",
'xref': "paper",
'yref': "paper",
'showarrow': False,
'font': {'size': 16}
}]
)
return fig
total_items = M * T
# Moved metric labels definition here - it doesn't depend on loaded data
metric_labels = { # For x-axis labels
"short_range": "S",
"medium_range": "M",
"long_range": "L",
"very_long_range": "XL",
# Add other potential metrics if they can be selected and need labels
"well_learned_digit": "WLD",
"has_performance_digit": "HPD",
"in_domain": "ID",
"out_domain": "OD"
}
# Filter labels based on *actually selected* metrics (ranges in this case)
selected_metric_labels = [metric_labels.get(m, m.replace('_',' ').title()) for m in selected_metrics] # Get labels for selected metrics
# ------ 单行模式 (Single Row Mode) ------
if total_items <= 32:
fig = go.Figure()
# Keep track of unique task labels added for x-axis update
all_tasks_x_level1 = []
for idx, file_name in enumerate(selected_files):
data_tuple = load_data(file_name, main_metric=main_metric, r=r)
# Unpack safely, ensuring enough elements exist
if len(data_tuple) < 9: continue # Skip if data loading failed badly
(
tasks, well_learned_digit, has_performance_digit,
in_domain, out_domain,
short_range, medium_range, long_range, very_long_range
) = data_tuple
# *** Define metric_vars HERE, AFTER load_data ***
metric_vars = {
"well_learned_digit": well_learned_digit,
"has_performance_digit": has_performance_digit,
"in_domain": in_domain,
"out_domain": out_domain,
"short_range": short_range,
"medium_range": medium_range,
"long_range": long_range,
"very_long_range": very_long_range
}
tasks_new_x_level1 = []
tasks_old_indices = [] # Keep track of original indices for data lookup
performance = []
for i, task in enumerate(tasks):
if task in selected_tasks:
tasks_new_x_level1.extend([task] * len(selected_metrics))
tasks_old_indices.append(i) # Store index i
for sel_m in selected_metrics:
# Use the metric_vars map and the stored index i
metric_data_list = metric_vars.get(sel_m)
# Ensure metric_data_list is not None and index is valid
if metric_data_list is not None and i < len(metric_data_list):
performance.append(metric_data_list[i])
else:
# Append None or 0 if metric data is missing for this index/metric
performance.append(None)
print(f"Warning: Missing data for metric '{sel_m}' at index {i} in file {file_name}")
if not tasks_new_x_level1: continue # Skip if no tasks matched for this file
# Store unique tasks added in this trace for later x-axis update
if idx == 0: # Only need tasks from the first file usually
all_tasks_x_level1 = tasks_new_x_level1
# Ensure performance list length matches x-axis length
expected_len = len(tasks_new_x_level1)
if len(performance) != expected_len:
print(f"Warning: Length mismatch for {file_name}. X-axis: {expected_len}, Y-axis: {len(performance)}. Skipping trace.")
continue
# Ensure the second level of x-axis also matches
x_level2 = selected_metric_labels * (len(tasks_new_x_level1) // len(selected_metric_labels))
if len(tasks_new_x_level1) != len(x_level2):
print(f"Warning: X-axis level length mismatch for {file_name}. Level 1: {len(tasks_new_x_level1)}, Level 2: {len(x_level2)}. Skipping trace.")
continue
fig.add_trace(go.Bar(
x=[tasks_new_x_level1, x_level2 ],
y=performance,
name=file_name[:-15] if file_name.endswith('_statistics.txt') else file_name, # Safer name slicing
marker_color=colors[idx % len(colors)],
legendgroup=f"legend_{idx}", # Group legend items
offsetgroup=f"group_{idx}" # Group bars
))
# Single row layout updates
fig.update_layout(
barmode='group',
xaxis_tickangle=-45,
template="ggplot2",
autosize=True,
height=450,
xaxis=dict(showgrid=False, title='Task<br />Range', type='multicategory'), # Specify multicategory type
yaxis=dict(title='Performance'),
title=" ".join(list(map(str.capitalize, main_metric.split("_")))),
margin=dict(l=60, r=40, t=80, b=100),
legend_title_text='Models'
)
# Update x-axis ticks explicitly for multicategory if data exists
if all_tasks_x_level1 and selected_metric_labels:
unique_tasks = sorted(list(set(all_tasks_x_level1)), key=all_tasks_x_level1.index) # Get unique tasks in order
tickvals_level1 = [task for task in unique_tasks]
tickvals_level2 = [selected_metric_labels[0]] * len(unique_tasks) # Show only first metric label below task group
# This approach might still be tricky, Plotly's auto-labeling is often better for multicat
# Let's rely on Plotly's default multicategory labeling unless specific formatting is needed.
pass # Remove explicit tick setting unless necessary
return fig
else:
# ------ 多行模式 (Multi Row Mode) ------
# (Keep the multi-row logic from the previous step, ensuring metric_vars is defined inside the inner loop)
row_count = math.ceil(total_items / 32)
row_height = 200
gap_px = 100
margin_top = 80
margin_bottom = 80
margin_left = 60
margin_right = 40
base_count = T // row_count
remainder = T % row_count
task_groups = []
start_idx = 0
for i in range(row_count):
this_count = base_count + (1 if i < remainder else 0)
group = selected_tasks[start_idx : start_idx + this_count]
task_groups.append(group)
start_idx += this_count
task_groups = [group for group in task_groups if group]
if not task_groups:
fig = go.Figure()
fig.update_layout(title="No tasks selected or data available for multi-row mode.")
return fig
row_count = len(task_groups)
net_height = row_count * row_height + max(0, row_count - 1) * gap_px
total_fig_height = net_height + margin_top + margin_bottom
vertical_spacing = gap_px / net_height if net_height > 0 and row_count > 1 else 0
row_fraction = row_height / net_height if net_height > 0 else 1
row_heights = [row_fraction] * row_count
fig = make_subplots(
rows=row_count,
cols=1,
row_heights=row_heights if row_heights else None,
vertical_spacing=vertical_spacing,
subplot_titles=[f"Tasks Subset {i+1}" for i in range(row_count)],
shared_xaxes=False
)
added_traces_info = {}
for row_i, sub_tasks in enumerate(task_groups, start=1):
if not sub_tasks: continue
row_x_level1 = []
row_x_level2 = []
for idx, file_name in enumerate(selected_files):
data_tuple = load_data(file_name, main_metric=main_metric, r=r)
if len(data_tuple) < 9: continue
(
tasks, well_learned_digit, has_performance_digit,
in_domain, out_domain,
short_range, medium_range, long_range, very_long_range
) = data_tuple
# *** Define metric_vars HERE ***
metric_vars = {
"well_learned_digit": well_learned_digit,
"has_performance_digit": has_performance_digit,
"in_domain": in_domain,
"out_domain": out_domain,
"short_range": short_range,
"medium_range": medium_range,
"long_range": long_range,
"very_long_range": very_long_range
}
tasks_new_x_level1 = []
tasks_old_indices = []
performance = []
for i, task in enumerate(tasks):
if task in sub_tasks:
tasks_new_x_level1.extend([task] * len(selected_metrics))
tasks_old_indices.append(i)
for sel_m in selected_metrics:
metric_data_list = metric_vars.get(sel_m)
if metric_data_list is not None and i < len(metric_data_list):
performance.append(metric_data_list[i])
else:
performance.append(None)
print(f"Warning: Missing data for metric '{sel_m}' at index {i} in file {file_name} (Row {row_i})")
if not tasks_new_x_level1: continue
expected_len = len(tasks_new_x_level1)
if len(performance) != expected_len:
print(f"Warning: Length mismatch for {file_name} (Row {row_i}). X: {expected_len}, Y: {len(performance)}. Skipping trace.")
continue
x_level2 = selected_metric_labels * (len(tasks_new_x_level1) // len(selected_metric_labels))
if len(tasks_new_x_level1) != len(x_level2):
print(f"Warning: X-axis level length mismatch for {file_name} (Row {row_i}). L1: {len(tasks_new_x_level1)}, L2: {len(x_level2)}. Skipping trace.")
continue
if idx == 0:
row_x_level1 = tasks_new_x_level1
row_x_level2 = x_level2
offset_group_name = f"group_{idx}"
fig.add_trace(
go.Bar(
x=[tasks_new_x_level1, x_level2],
y=performance,
name=file_name[:-15] if file_name.endswith('_statistics.txt') else file_name,
marker_color=colors[idx % len(colors)],
showlegend=(row_i == 1),
legendgroup=f"legend_{idx}",
offsetgroup=offset_group_name
),
row=row_i,
col=1
)
if row_i not in added_traces_info: added_traces_info[row_i] = set()
added_traces_info[row_i].add(offset_group_name)
if row_x_level1 and row_x_level2:
fig.update_xaxes(type='multicategory', row=row_i, col=1)
# Multi-row layout updates
fig.update_layout(
barmode='group',
template="ggplot2",
autosize=False,
width=None,
height=total_fig_height,
title=" ".join(list(map(str.capitalize, main_metric.split("_")))),
margin=dict(l=margin_left, r=margin_right, t=margin_top, b=margin_bottom),
legend_title_text='Models'
)
for i in range(row_count):
is_last_row = (i == row_count - 1)
fig.update_xaxes(
showgrid=False,
tickangle=-45 if is_last_row else -30,
title_text='Task<br />Range' if is_last_row else '',
row=i+1,
col=1
)
fig.update_yaxes(
title_text='Performance',
row=i+1,
col=1
)
return fig
# ================== Styles ==================
SIDEBAR_STYLE = {
"position": "fixed",
"top": 0,
"left": 0,
"bottom": 0,
"width": "24rem",
"padding": "2rem 1rem",
"backgroundColor": "#FFFFFF",
"boxShadow": "2px 0px 5px rgba(0,0,0,0.1)",
"overflowY": "auto",
"transition": "all 0.3s",
"zIndex": 1000 # Sidebar itself
}
SIDEBAR_HIDDEN = {
**SIDEBAR_STYLE,
"left": "-24rem", # Move off-screen
"padding": "2rem 0",
}
CONTENT_STYLE = {
"marginLeft": "24rem",
"padding": "2rem 2rem",
"transition": "margin-left 0.3s",
"backgroundColor": "#F7F7F7",
"minHeight": "100vh",
}
CONTENT_STYLE_FULL = {
**CONTENT_STYLE,
"marginLeft": "0rem",
}
# --- NEW: Style for the fixed toggle button container ---
TOGGLE_BUTTON_STYLE = {
"position": "fixed",
"top": "10px", # Position from top
"left": "10px", # Position from left
"zIndex": 1001, # Ensure it's above the sidebar
"transition": "left 0.3s" # Optional: Animate button position slightly if needed
}
TOGGLE_BUTTON_STYLE_SHIFTED = { # Optional: Style when sidebar is open
**TOGGLE_BUTTON_STYLE,
"left": "calc(24rem + 10px)" # Position relative to open sidebar edge
# Or keep it fixed at "10px" - simpler
}
# ================== Dash 布局 (Dash Layout) ==================
app.layout = html.Div(style={"margin": "0", "padding": "0"}, children=[
# --- NEW: Fixed Toggle Button Container ---
html.Div(
id="toggle-button-container", # Give it an ID if you want to style it dynamically
style=TOGGLE_BUTTON_STYLE, # Apply the fixed style
children=[
html.Button(
"☰", # Use an icon/symbol for compactness
id="sidebar-toggle",
n_clicks=0,
style={
"padding": "8px 12px",
"fontSize": "1.2em",
"backgroundColor": "#e9ecef",
"border": "1px solid #ccc",
"borderRadius": "5px",
"cursor": "pointer",
"boxShadow": "1px 1px 3px rgba(0,0,0,0.2)"
},
title="Toggle Sidebar" # Tooltip
)
]
),
# --- Sidebar ---
html.Div(
id="sidebar",
style=SIDEBAR_STYLE, # Start open
children=[
html.H3("Controls", style={"textAlign": "center", "marginBottom": "1.5rem", "marginTop": "2rem"}), # Add margin top to avoid button overlap
# --- REMOVED Button from here ---
# (Keep all the control sections: Metric, Files, Tasks, Ranges)
# Metric 选择单选框
html.Div(
style={"marginBottom": "20px", "borderTop": "1px solid #eee", "paddingTop": "15px"},
children=[
html.Label("Select Metric:", style={"fontWeight": "bold", "display": "block", "marginBottom": "5px"}),
dcc.RadioItems(
id='metric-selector',
options=[
{'label': 'Exact Match', 'value': 'exact_match'},
{'label': 'Digit Match', 'value': 'digit_match'},
{'label': 'Dlength', 'value': 'dlength'}
],
value='exact_match',
# inline=True, # Better stacked in sidebar
labelStyle={'display': 'block', 'marginBottom': '5px'},
style={"marginBottom": "10px"}
),
]
),
# 文件选择栏 (Model Selection)
html.Div(
style={"marginBottom": "20px", "borderTop": "1px solid #eee", "paddingTop": "15px"},
children=[
html.Label("Select Models:", style={"fontWeight": "bold", "display": "block", "marginBottom": "5px"}),
dcc.Checklist(
id='file-selector-all-clear',
options=[
{'label': 'Select All', 'value': 'all'},
{'label': 'Clear', 'value': 'clear'},
],
value=[],
inline=True,
style={"marginBottom": "5px"}
),
dcc.Checklist(
id='file-selector',
options=[{'label': file_name[:-15] if file_name.endswith('_statistics.txt') else file_name, 'value': file_name} for file_name in file_names],
value=[ # Default selection
'GPT-4o_statistics.txt',
'Llama-3.1-8B-ft_statistics.txt',
'Mixtral-8x7B_statistics.txt',
'Qwen2-72B_statistics.txt'
],
# inline=True, # Stacked looks better in narrow sidebar
labelStyle={'display': 'block', 'marginBottom': '3px'},
style={"maxHeight": "200px", "overflowY": "auto", "border": "1px solid #ddd", "padding": "5px", "borderRadius": "4px"} # Scrollable list
),
]
),
# 任务选择 (Task Selection)
html.Div(
style={"marginBottom": "20px", "borderTop": "1px solid #eee", "paddingTop": "15px"},
children=[
html.Label("Select Tasks:", style={"fontWeight": "bold", "display": "block", "marginBottom": "10px"}),
html.H5("Integer Tasks", style={"fontWeight": "bold", "marginTop": "10px"}),
dcc.Checklist( id='int-task-selector-all-clear', options=[ {'label': 'All', 'value': 'all'}, {'label': 'Clear', 'value': 'clear'}], value=[], inline=True, style={"marginBottom": "5px"}),
dcc.Checklist( id='int-task-selector', options=[{'label': task, 'value': task + '<br />Integer'} for task in intTasks], value=['Add<br />Integer'], labelStyle={'display': 'block'}, style={"maxHeight": "150px", "overflowY": "auto", "border": "1px solid #ddd", "padding": "5px", "borderRadius": "4px", "marginBottom": "10px"}),
html.H5("Float Tasks", style={"fontWeight": "bold", "marginTop": "15px"}),
dcc.Checklist(id='float-task-selector-all-clear', options=[{'label': 'All', 'value': 'all'}, {'label': 'Clear', 'value': 'clear'}], value=[], inline=True, style={"marginBottom": "5px"}),
dcc.Checklist( id='float-task-selector', options=[{'label': task, 'value': task + '<br />Float'} for task in floatTasks], value=['Add<br />Float'], labelStyle={'display': 'block'}, style={"maxHeight": "150px", "overflowY": "auto", "border": "1px solid #ddd", "padding": "5px", "borderRadius": "4px", "marginBottom": "10px"}),
html.H5("Fraction Tasks", style={"fontWeight": "bold", "marginTop": "15px"}),
dcc.Checklist(id='fraction-task-selector-all-clear', options=[{'label': 'All', 'value': 'all'}, {'label': 'Clear', 'value': 'clear'}], value=[], inline=True, style={"marginBottom": "5px"}),
dcc.Checklist( id='fraction-task-selector', options=[{'label': task, 'value': task + '<br />Fraction'} for task in fractionTasks], value=['Add<br />Fraction'], labelStyle={'display': 'block'}, style={"maxHeight": "150px", "overflowY": "auto", "border": "1px solid #ddd", "padding": "5px", "borderRadius": "4px", "marginBottom": "10px"}),
html.H5("Scientific Tasks", style={"fontWeight": "bold", "marginTop": "15px"}),
dcc.Checklist(id='sci-task-selector-all-clear', options=[{'label': 'All', 'value': 'all'}, {'label': 'Clear', 'value': 'clear'}], value=[], inline=True, style={"marginBottom": "5px"}),
dcc.Checklist( id='sci-task-selector', options=[{'label': task, 'value': task + '<br />ScientificNotation'} for task in sciTasks], value=['Add<br />ScientificNotation'], labelStyle={'display': 'block'}, style={"maxHeight": "150px", "overflowY": "auto", "border": "1px solid #ddd", "padding": "5px", "borderRadius": "4px", "marginBottom": "10px"}),
]
),
# Range 选择
html.Div(
style={"marginBottom": "20px", "borderTop": "1px solid #eee", "paddingTop": "15px"},
children=[
html.Label("Select Ranges:", style={"fontWeight": "bold", "display": "block", "marginBottom": "5px"}),
dcc.Checklist(
id='metrics-selector', # Keep ID, though it selects ranges now
options=[
{'label': 'Short Range (S)', 'value': 'short_range'},
{'label': 'Medium Range (M)', 'value': 'medium_range'},
{'label': 'Long Range (L)', 'value': 'long_range'},
{'label': 'Very Long Range (XL)', 'value': 'very_long_range'}
],
value=['short_range', 'medium_range', 'long_range', 'very_long_range'], # Default
# inline=True, # Stacked
labelStyle={'display': 'block', 'marginBottom': '5px'},
style={"marginBottom": "10px"}
),
]
),
]
), # End Sidebar
# --- Main Content Area ---
html.Div(
id="content",
style=CONTENT_STYLE, # Start with margin for open sidebar
children=[
# Add padding top to content to prevent overlap with fixed button
html.Div(style={"paddingTop": "50px"}, children=[
html.H1(
"NUPA Performance",
style={"textAlign": "center", "marginBottom": "30px", "color": "#333"}
),
# Graph Area
html.Div(
style={
"backgroundColor": "#FFFFFF",
"padding": "20px",
"borderRadius": "8px",
"boxShadow": "0 1px 4px rgba(0,0,0,0.1)",
"marginBottom": "20px",
},
children=[
dcc.Loading(
id="loading-graph",
type="circle",
children=dcc.Graph(
id='performance-plot',
style={"width": "100%", "height": "auto"}
)
)
]
)
]) # End padded content div
]
) # End Content Area
])
# ================== Callbacks ==================
# --- Callback: Plotting (Keep existing) ---
@app.callback(
Output('performance-plot', 'figure'),
Input('metric-selector', 'value'),
Input('file-selector', 'value'),
Input('int-task-selector', 'value'),
Input('float-task-selector', 'value'),
Input('fraction-task-selector', 'value'),
Input('sci-task-selector', 'value'),
Input('metrics-selector', 'value') # Input is the range selector now
)
def update_figure(main_metric, selected_files, selected_int_tasks,
selected_float_tasks, selected_fraction_tasks,
selected_sci_tasks, selected_ranges): # Renamed variable
selected_tasks = selected_int_tasks + selected_float_tasks + selected_fraction_tasks + selected_sci_tasks
r = (0, len(keys)) # Use all keys by default now, adjust if needed
# Pass selected_ranges instead of a fixed list
return plot(main_metric, selected_files, selected_ranges, selected_tasks, r)
# --- Callback: Sidebar Toggle (No change needed in logic) ---
@app.callback(
[Output("sidebar", "style"), Output("content", "style")],
[Input("sidebar-toggle", "n_clicks")],
[State("sidebar", "style"), State("content", "style")] # Use content style to check state
)
def toggle_sidebar(n, current_sidebar_style, current_content_style):
if n is None or n == 0:
return no_update, no_update
# Check if sidebar is currently open based on content margin
if current_content_style.get("marginLeft") == "24rem": # If sidebar is currently open
new_sidebar_style = SIDEBAR_HIDDEN
new_content_style = CONTENT_STYLE_FULL
else: # If sidebar is currently hidden
new_sidebar_style = SIDEBAR_STYLE
new_content_style = CONTENT_STYLE
return new_sidebar_style, new_content_style
# --- Callbacks: "Select All / Clear" (Keep existing) ---
def make_task_selector_callback(output_id, output_all_clear_id, task_list, task_suffix):
@app.callback(
[Output(output_id, 'value'),
Output(output_all_clear_id, 'value')],
Input(output_all_clear_id, 'value'),
)
def update_task_selector(all_clear_value):
if not all_clear_value:
raise exceptions.PreventUpdate
trigger = all_clear_value[-1]
if 'clear' == trigger:
return [], []
elif 'all' == trigger:
all_values = [task + task_suffix for task in task_list]
return all_values, []
raise exceptions.PreventUpdate
return update_task_selector
update_int_selector = make_task_selector_callback('int-task-selector', 'int-task-selector-all-clear', intTasks, '<br />Integer')
update_float_selector = make_task_selector_callback('float-task-selector', 'float-task-selector-all-clear', floatTasks, '<br />Float')
update_fraction_selector = make_task_selector_callback('fraction-task-selector', 'fraction-task-selector-all-clear', fractionTasks, '<br />Fraction')
update_sci_selector = make_task_selector_callback('sci-task-selector', 'sci-task-selector-all-clear', sciTasks, '<br />ScientificNotation')
# --- File Selector All/Clear ---
@app.callback(
[Output('file-selector', 'value'),
Output('file-selector-all-clear', 'value')],
Input('file-selector-all-clear', 'value'),
)
def update_file_selector(all_clear_value):
if not all_clear_value:
raise exceptions.PreventUpdate
trigger = all_clear_value[-1]
if 'clear' == trigger:
return [], []
elif 'all' == trigger:
return file_names, []
raise exceptions.PreventUpdate
# ================== Run App ==================
# (Keep existing run code)
if name == '__main__':
if not os.path.isdir(results_dir):
print(f"Error: The directory '{results_dir}' does not exist.")
print("Please create it and place the necessary statistics.txt files inside.")
elif not keys:
print(f"Warning: Could not load keys. Functionality might be limited. Check data files in {results_dir}")
else:
print(f"Looking for data files in: {os.path.abspath(results_dir)}")
# Only run if keys were loaded (or decide how to handle empty keys)
# if keys:
app.run(debug=True, host='0.0.0.0', port=7860)
# else:
# print("Exiting: Cannot run app without valid keys loaded.") |