File size: 30,576 Bytes
9f66521 39cac8d 9f66521 e65c4e1 9f66521 8fe12ec 9f66521 ab05b20 cc3c3c4 7c9f0ec b7d9a82 7c9f0ec 175d141 7c9f0ec 7e0131c 7c9f0ec 175d141 7c9f0ec e5c945e 7c9f0ec e5c945e 7c9f0ec e5c945e 7c9f0ec e5c945e 7c9f0ec e5c945e 7c9f0ec 66d4f9c b9a5309 66d4f9c b9a5309 66d4f9c b9a5309 66d4f9c 50b789e 66d4f9c 50b789e 66d4f9c 52aeaac 0bf32c8 52aeaac 66d4f9c 4e56ffe 66d4f9c 4e56ffe 0bf32c8 52aeaac 4e56ffe e65c4e1 52aeaac 4e56ffe e65c4e1 52aeaac 4e56ffe 52aeaac 4e56ffe 52aeaac 4e56ffe 66d4f9c 52aeaac 4e56ffe 52aeaac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 |
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from collections import defaultdict, Counter
import base64
from sklearn.manifold import MDS
import networkx as nx
st.set_page_config(layout="wide")
def extract_word_and_chars(token):
if token == '$' or '<START>' in token or '<END>' in token:
return None, None
chars = []
temp_chars = token.split(',')
for char in temp_chars:
if '?' in char:
base_char = char.replace('?', '')
if base_char:
chars.append(base_char)
chars.append('?')
else:
chars.append(char)
word = ''.join(chars)
return word, chars
def analyze_csv(df):
words = []
chars_list = []
char_positions = defaultdict(list)
char_connections = defaultdict(Counter)
word_positions = []
folio_word_map = defaultdict(Counter)
for _, row in df.iterrows():
line_words = []
token_columns = [col for col in df.columns if col.startswith('t')]
for pos, col in enumerate(token_columns):
token = row[col]
if pd.notna(token) and token != '$':
if token.startswith('"') and token.endswith('"'):
token = token[1:-1]
word, chars = extract_word_and_chars(token)
if word:
words.append(word)
chars_list.append(chars)
line_words.append((word, pos, chars))
folio_word_map[row['folio']][word] += 1
for j, char in enumerate(chars):
char_positions[char].append(j)
for j in range(len(chars) - 1):
char_connections[chars[j]][chars[j+1]] += 1
if line_words:
word_positions.append({
'folio': row['folio'],
'par': row['par'],
'line': row['line'],
'words': line_words
})
return words, chars_list, char_positions, char_connections, word_positions, folio_word_map
def analyze_trigrams(words, chars_list):
char_trigrams = Counter()
word_trigrams = Counter()
for chars in chars_list:
for i in range(len(chars)-2):
trigram = tuple(chars[i:i+3])
char_trigrams[trigram] += 1
for i in range(len(words)-2):
trigram = tuple(words[i:i+3])
word_trigrams[trigram] += 1
return char_trigrams, word_trigrams
def create_12_slot_table(chars_list):
slot_frequencies = [Counter() for _ in range(12)]
for chars in chars_list:
for i, char in enumerate(chars[:12]):
slot_frequencies[i][char] += 1
data = []
all_chars = sorted(set(char for counter in slot_frequencies for char in counter))
for char in all_chars:
row = {'Character': char}
for i in range(12):
row[f'Slot_{i+1}'] = slot_frequencies[i][char]
data.append(row)
return pd.DataFrame(data)
def analyze_slot_structure(chars_list):
slot_contents = defaultdict(Counter)
max_slots = 0
for chars in chars_list:
if len(chars) > max_slots:
max_slots = len(chars)
for i, char in enumerate(chars):
slot_contents[i][char] += 1
slot_summary = {}
for slot in range(max_slots):
if slot in slot_contents:
common_chars = slot_contents[slot].most_common(10)
slot_summary[slot] = common_chars
return slot_summary, max_slots
def create_folio_word_scatter(folio_word_map):
all_words = set()
for word_counter in folio_word_map.values():
all_words.update(word_counter.keys())
folios = sorted(folio_word_map.keys())
word_freq_matrix = np.zeros((len(folios), len(all_words)))
for i, folio in enumerate(folios):
for j, word in enumerate(all_words):
word_freq_matrix[i, j] = folio_word_map[folio][word]
mds = MDS(n_components=2, random_state=42)
folio_coords = mds.fit_transform(word_freq_matrix)
fig, ax = plt.subplots(figsize=(12, 8))
scatter = ax.scatter(folio_coords[:, 0], folio_coords[:, 1])
for i, folio in enumerate(folios):
ax.annotate(folio, (folio_coords[i, 0], folio_coords[i, 1]))
ax.set_title('Folio Similarity based on Word Usage')
ax.set_xlabel('Dimension 1')
ax.set_ylabel('Dimension 2')
return fig
def plot_char_positions(char_positions, max_slots):
chars = []
positions = []
counts = []
for char, pos_list in char_positions.items():
pos_counts = Counter(pos_list)
for pos, count in pos_counts.items():
if pos < max_slots:
chars.append(char)
positions.append(pos)
counts.append(count)
df = pd.DataFrame({
'Character': chars,
'Position': positions,
'Count': counts
})
pivot_df = df.pivot(index='Character', columns='Position', values='Count').fillna(0)
fig, ax = plt.subplots(figsize=(15, 10))
sns.heatmap(pivot_df, cmap="YlGnBu", ax=ax)
ax.set_title('Character Position Heatmap')
ax.set_xlabel('Position in Word')
ax.set_ylabel('Character')
return fig
def get_download_link_csv(df, filename):
csv = df.to_csv(index=False)
b64 = base64.b64encode(csv.encode()).decode()
href = f'<a href="data:file/csv;base64,{b64}" download="{filename}">Download CSV</a>'
return href
st.title("Voynich Manuscript Analyzer")
st.write("Upload your CSV file to discover potential patterns and character distributions.")
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
if uploaded_file is not None:
df = pd.read_csv(uploaded_file)
words, chars_list, char_positions, char_connections, word_positions, folio_word_map = analyze_csv(df)
st.subheader("Basic Statistics")
st.write(f"Total words: {len(words)}")
st.write(f"Total unique words: {len(set(words))}")
unique_chars = set()
for chars in chars_list:
unique_chars.update(chars)
st.write(f"Total unique characters: {len(unique_chars)}")
st.write("Unique characters:", ", ".join(sorted(unique_chars)))
st.subheader("Trigram Analysis")
char_trigrams, word_trigrams = analyze_trigrams(words, chars_list)
st.write("Top 20 Character Trigrams")
char_trigram_df = pd.DataFrame([
{'Trigram': ' - '.join(trigram), 'Count': count}
for trigram, count in char_trigrams.most_common(20)
])
st.dataframe(char_trigram_df)
st.markdown(get_download_link_csv(char_trigram_df, "char_trigrams.csv"), unsafe_allow_html=True)
st.write("Top 20 Word Trigrams")
word_trigram_df = pd.DataFrame([
{'Trigram': ' - '.join(trigram), 'Count': count}
for trigram, count in word_trigrams.most_common(20)
])
st.dataframe(word_trigram_df)
st.markdown(get_download_link_csv(word_trigram_df, "word_trigrams.csv"), unsafe_allow_html=True)
st.subheader("Character Bigram Analysis")
char_bigrams = Counter()
for chars in chars_list:
for i in range(len(chars)-1):
bigram = tuple(chars[i:i+2])
char_bigrams[bigram] += 1
char_bigram_df = pd.DataFrame([
{'Bigram': ' - '.join(bigram), 'Count': count}
for bigram, count in char_bigrams.most_common(20)
])
st.dataframe(char_bigram_df)
st.markdown(get_download_link_csv(char_bigram_df, "char_bigrams.csv"), unsafe_allow_html=True)
st.subheader("Word Bigram Analysis")
word_bigrams = Counter()
for i in range(len(words)-1):
bigram = tuple(words[i:i+2])
word_bigrams[bigram] += 1
word_bigram_df = pd.DataFrame([
{'Bigram': ' - '.join(bigram), 'Count': count}
for bigram, count in word_bigrams.most_common(20)
])
st.dataframe(word_bigram_df)
st.markdown(get_download_link_csv(word_bigram_df, "word_bigrams.csv"), unsafe_allow_html=True)
st.subheader("12-Slot Character Frequency Table")
slot_freq_df = create_12_slot_table(chars_list)
st.dataframe(slot_freq_df)
st.markdown(get_download_link_csv(slot_freq_df, "slot_frequencies.csv"), unsafe_allow_html=True)
slot_summary, max_slots = analyze_slot_structure(chars_list)
st.subheader("Words by Length Analysis")
# Group words by length
length_groups = defaultdict(list)
for word, chars in zip(words, chars_list):
length = len(chars)
if length <= 12: # Only consider words up to 12 characters
length_groups[length].append((word, chars))
# Create dropdown for selecting word length
selected_length = st.selectbox("Select word length to analyze:",
sorted(length_groups.keys()))
if selected_length:
words_of_length = length_groups[selected_length]
# Create a matrix of characters at each position
position_chars = [Counter() for _ in range(selected_length)]
for _, chars in words_of_length:
for i, char in enumerate(chars):
position_chars[i][char] += 1
# Display frequency table
st.write(f"Found {len(words_of_length)} words of length {selected_length}")
# Create position-based frequency table using all unique characters
freq_data = []
for char in unique_chars: # Using the existing unique_chars variable
row = {'Character': char}
for pos in range(selected_length):
row[f'Pos_{pos+1}'] = position_chars[pos][char]
freq_data.append(row)
freq_df = pd.DataFrame(freq_data)
st.dataframe(freq_df)
st.markdown(get_download_link_csv(freq_df, f"length_{selected_length}_analysis.csv"),
unsafe_allow_html=True)
# Display example words
st.write("Sample words of this length:")
sample_df = pd.DataFrame([
{'Word': word, 'Characters': ' '.join(chars)}
for word, chars in words_of_length[:20] # Show first 20 examples
])
st.dataframe(sample_df)
st.subheader("Word Distribution Across Folios")
folio_scatter = create_folio_word_scatter(folio_word_map)
st.pyplot(folio_scatter)
st.subheader("Character Pattern Analysis")
unique_chars = sorted(set(char for chars in chars_list for char in chars))
selected_char = st.selectbox("Select a character to analyze:", unique_chars)
if selected_char:
before_counter = Counter()
after_counter = Counter()
for chars in chars_list:
for i, char in enumerate(chars):
if char == selected_char:
if i > 0:
before_counter[chars[i-1]] += 1
if i < len(chars) - 1:
after_counter[chars[i+1]] += 1
col1, col2 = st.columns(2)
with col1:
st.write(f"Characters that commonly PRECEDE '{selected_char}':")
before_df = pd.DataFrame(before_counter.most_common(10),
columns=['Character', 'Count'])
st.dataframe(before_df)
# Create bar chart for preceding characters
fig1, ax1 = plt.subplots()
plt.bar(before_df['Character'], before_df['Count'])
plt.title(f"Characters before '{selected_char}'")
plt.xticks(rotation=45)
st.pyplot(fig1)
with col2:
st.write(f"Characters that commonly FOLLOW '{selected_char}':")
after_df = pd.DataFrame(after_counter.most_common(10),
columns=['Character', 'Count'])
st.dataframe(after_df)
# Create bar chart for following characters
fig2, ax2 = plt.subplots()
plt.bar(after_df['Character'], after_df['Count'])
plt.title(f"Characters after '{selected_char}'")
plt.xticks(rotation=45)
st.pyplot(fig2)
st.subheader("Word Sequence Viewer")
# Initialize session states
if 'current_folio' not in st.session_state:
st.session_state.current_folio = ''
if 'current_line' not in st.session_state:
st.session_state.current_line = ''
# Get available folios
available_folios = sorted(set(line_data['folio'] for line_data in word_positions))
selected_folio = st.selectbox("Select Folio:", [''] + available_folios,
key='folio_select',
on_change=lambda: setattr(st.session_state, 'current_line', ''))
# Get available lines for selected folio
available_lines = []
if selected_folio:
available_lines = [(line_data['par'], line_data['line'])
for line_data in word_positions
if line_data['folio'] == selected_folio]
available_lines = sorted(set(available_lines))
# Line selector
selected_line = st.selectbox("Select Line:",
[''] + [f"Par {par}, Line {line}" for par, line in available_lines])
# Display selected line's words
if selected_folio and selected_line:
par, line = map(int, selected_line.replace('Par ', '').replace('Line ', '').split(', '))
# Get words for selected line
line_words = next((line_data['words']
for line_data in word_positions
if line_data['folio'] == selected_folio
and line_data['par'] == par
and line_data['line'] == line), [])
# Display each word in the line
for word, _, chars in line_words:
st.write(f"Word: {word}")
cols = st.columns(12)
for i in range(12):
with cols[i]:
char = chars[i] if i < len(chars) else ""
st.markdown(f"""
<div style='
width: 40px;
height: 40px;
border: 2px solid #ccc;
display: flex;
align-items: center;
justify-content: center;
font-size: 20px;
background-color: {"#e6f3ff" if char else "white"};
margin: 2px;
'>
{char}
</div>
""", unsafe_allow_html=True)
st.subheader("Line Viewer")
# Get available folios
available_folios = sorted(set(line_data['folio'] for line_data in word_positions))
selected_folio = st.selectbox("Select Folio for Line View:", [''] + available_folios)
# Get available lines for selected folio
if selected_folio:
available_lines = [(line_data['par'], line_data['line'])
for line_data in word_positions
if line_data['folio'] == selected_folio]
available_lines = sorted(set(available_lines))
# Line selector
selected_line = st.selectbox("Select Line:",
[''] + [f"Par {par}, Line {line}" for par, line in available_lines])
# Display selected line's words
if selected_line:
par, line = map(int, selected_line.replace('Par ', '').replace('Line ', '').split(', '))
# Get words for selected line
line_words = next((line_data['words']
for line_data in word_positions
if line_data['folio'] == selected_folio
and line_data['par'] == par
and line_data['line'] == line), [])
# Display each word in the line
for word, _, chars in line_words:
st.write(f"Word: {word}")
cols = st.columns(12)
for i in range(12):
with cols[i]:
char = chars[i] if i < len(chars) else ""
st.markdown(f"""
<div style='
width: 40px;
height: 40px;
border: 2px solid #ccc;
display: flex;
align-items: center;
justify-content: center;
font-size: 20px;
background-color: {"#e6f3ff" if char else "white"};
margin: 2px;
'>
{char}
</div>
""", unsafe_allow_html=True)
st.subheader("Language Structure Analysis")
# 1. Word Length Distribution with Germanic Comparison
fig1 = plt.figure(figsize=(10, 6))
word_lengths = [len(chars) for chars in chars_list]
sns.histplot(word_lengths, bins=range(1, 14))
plt.title("Word Length Distribution")
plt.xlabel("Word Length")
plt.ylabel("Frequency")
st.pyplot(fig1)
# 2. Character Position Heatmap
char_pos_matrix = np.zeros((len(unique_chars), 12))
for chars in chars_list:
for i, char in enumerate(chars):
if i < 12: # Only first 12 positions
char_idx = unique_chars.index(char)
char_pos_matrix[char_idx, i] += 1
fig2 = plt.figure(figsize=(12, 8))
sns.heatmap(char_pos_matrix,
xticklabels=range(1, 13),
yticklabels=unique_chars,
cmap='YlOrRd')
plt.title("Character Position Preferences")
plt.xlabel("Position in Word")
plt.ylabel("Character")
st.pyplot(fig2)
# 3. Word Position in Line Analysis
st.subheader("Word Position Analysis")
word_positions_in_lines = []
line_lengths = []
for line_data in word_positions:
line_len = len(line_data['words'])
line_lengths.append(line_len)
for pos, (word, _, chars) in enumerate(line_data['words']):
word_positions_in_lines.append({
'position': pos + 1,
'word_length': len(chars),
'line_length': line_len
})
pos_df = pd.DataFrame(word_positions_in_lines)
fig3 = plt.figure(figsize=(10, 6))
sns.boxplot(data=pos_df, x='position', y='word_length')
plt.title("Word Length by Position in Line")
plt.xlabel("Position in Line")
plt.ylabel("Word Length")
st.pyplot(fig3)
# 4. Character Bigram Network (Top 20)
char_bigrams = Counter()
for chars in chars_list:
for i in range(len(chars)-1):
char_bigrams[tuple(chars[i:i+2])] += 1
# Create network graph
G = nx.Graph()
for (char1, char2), count in char_bigrams.most_common(20):
G.add_edge(char1, char2, weight=count)
fig4 = plt.figure(figsize=(10, 10))
pos = nx.spring_layout(G)
# Calculate edge widths properly
edge_weights = [G[u][v]['weight'] for u,v in G.edges()]
max_weight = max(edge_weights) if edge_weights else 1
nx.draw(G, pos, with_labels=True,
node_color='lightblue',
node_size=1000,
font_size=12,
width=[G[u][v]['weight']/max_weight * 5 for u,v in G.edges()])
plt.title("Top Character Connections")
st.pyplot(fig4)
# 5. Line Length Distribution
fig5 = plt.figure(figsize=(10, 6))
sns.histplot(line_lengths)
plt.title("Words per Line Distribution")
plt.xlabel("Number of Words in Line")
plt.ylabel("Frequency")
st.pyplot(fig5)
# 6. First/Last Character Analysis
first_chars = Counter(chars[0] for chars in chars_list)
last_chars = Counter(chars[-1] for chars in chars_list)
fig6, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 6))
# First characters
first_df = pd.DataFrame(first_chars.most_common(10),
columns=['Character', 'Count'])
sns.barplot(data=first_df, x='Character', y='Count', ax=ax1)
ax1.set_title("Most Common Initial Characters")
ax1.tick_params(axis='x', rotation=45)
# Last characters
last_df = pd.DataFrame(last_chars.most_common(10),
columns=['Character', 'Count'])
sns.barplot(data=last_df, x='Character', y='Count', ax=ax2)
ax2.set_title("Most Common Final Characters")
ax2.tick_params(axis='x', rotation=45)
st.pyplot(fig6)
# 7. Character Trigram Patterns
char_trigrams = Counter()
for chars in chars_list:
if len(chars) >= 3:
for i in range(len(chars)-2):
char_trigrams[tuple(chars[i:i+3])] += 1
# Display top trigrams
trigram_df = pd.DataFrame([
{'Trigram': ' - '.join(trigram), 'Count': count}
for trigram, count in char_trigrams.most_common(20)
])
st.write("Most Common Character Sequences (Trigrams)")
st.dataframe(trigram_df)
# 8. Word Length Correlation Matrix
word_lengths_by_line = []
for line_data in word_positions:
line_word_lengths = [len(chars) for _, _, chars in line_data['words']]
if len(line_word_lengths) >= 5: # Only lines with 5+ words
word_lengths_by_line.append(line_word_lengths[:5]) # First 5 words
if word_lengths_by_line:
length_corr = np.corrcoef(np.array(word_lengths_by_line).T)
fig8 = plt.figure(figsize=(8, 8))
sns.heatmap(length_corr,
annot=True,
cmap='coolwarm',
xticklabels=range(1, 6),
yticklabels=range(1, 6))
plt.title("Word Length Correlations by Position")
st.pyplot(fig8)
st.subheader("Advanced Grammar Pattern Analysis")
# 1. Position-Length-Character Correlation
pos_len_char_data = []
for line_data in word_positions:
for pos, (word, _, chars) in enumerate(line_data['words']):
pos_len_char_data.append({
'position': pos + 1,
'length': len(chars),
'first_char': chars[0],
'last_char': chars[-1]
})
pos_len_df = pd.DataFrame(pos_len_char_data)
fig_plc = plt.figure(figsize=(12, 6))
pivot_data = pos_len_df.pivot_table(
index='position',
columns='length',
values='first_char',
aggfunc='count',
fill_value=0
)
sns.heatmap(pivot_data, cmap='YlOrRd')
plt.title("Word Length-Position Distribution with Character Markers")
st.pyplot(fig_plc)
# 2. Bigram-Position Analysis
position_bigrams = defaultdict(Counter)
for line_data in word_positions:
for pos, (word, _, chars) in enumerate(line_data['words']):
for i in range(len(chars)-1):
bigram = tuple(chars[i:i+2])
position_bigrams[pos+1][bigram] += 1
# Create position-specific bigram networks
for position in range(1, 5): # First 4 positions
fig_bp = plt.figure(figsize=(8, 8))
G = nx.Graph()
for (char1, char2), count in position_bigrams[position].most_common(15):
G.add_edge(char1, char2, weight=count)
pos = nx.spring_layout(G)
edge_weights = [G[u][v]['weight'] for u,v in G.edges()]
max_weight = max(edge_weights) if edge_weights else 1
nx.draw(G, pos, with_labels=True,
node_color='lightblue',
node_size=1000,
font_size=12,
width=[G[u][v]['weight']/max_weight * 5 for u,v in G.edges()])
plt.title(f"Character Connections in Position {position}")
st.pyplot(fig_bp)
# 3. Length-Initial-Final Pattern Matrix
pattern_matrix = defaultdict(lambda: defaultdict(int))
for chars in chars_list:
length = len(chars)
pattern = (chars[0], chars[-1])
pattern_matrix[length][pattern] += 1
# Convert to DataFrame for visualization
pattern_data = []
for length in range(1, 13):
for (first, last), count in pattern_matrix[length].items():
pattern_data.append({
'length': length,
'pattern': f"{first}-{last}",
'count': count
})
pattern_df = pd.DataFrame(pattern_data)
fig_pat = plt.figure(figsize=(15, 8))
pivot_patterns = pattern_df.pivot_table(
index='pattern',
columns='length',
values='count',
fill_value=0
)
sns.heatmap(pivot_patterns, cmap='YlOrRd')
plt.title("Word Length-Pattern Distribution")
st.pyplot(fig_pat)
# 4. Cross-Feature Correlation Matrix
feature_data = []
for line_data in word_positions:
for pos, (word, _, chars) in enumerate(line_data['words']):
feature_data.append({
'position': pos + 1,
'length': len(chars),
'initial_char_type': chars[0] in 'aeiou', # Example feature
'final_char_type': chars[-1] in 'aeiou', # Example feature
'has_special': any(c in '?^' for c in chars)
})
feature_df = pd.DataFrame(feature_data)
corr_matrix = feature_df.corr()
fig_corr = plt.figure(figsize=(10, 10))
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm')
plt.title("Cross-Feature Correlation Matrix")
st.pyplot(fig_corr)
st.subheader("Pattern Discovery")
# 1. Morphological Chain Analysis
def find_related_patterns(word_chars):
patterns = defaultdict(list)
for chars in word_chars:
# Create pattern template
for i in range(len(chars)):
template = list(chars)
template[i] = '*'
pattern_key = tuple(template)
patterns[pattern_key].append(''.join(chars))
return {k: v for k, v in patterns.items() if len(v) > 1}
related_patterns = find_related_patterns(chars_list)
st.write("Morphological Patterns (words differing by one character)")
pattern_df = pd.DataFrame([
{'Pattern': ''.join(pattern).replace('*', '_'),
'Related Words': ', '.join(words)}
for pattern, words in list(related_patterns.items())[:20]
])
st.dataframe(pattern_df)
# 2. Syntactic Block Detection
def find_recurring_sequences(word_positions):
sequences = defaultdict(int)
for line_data in word_positions:
words = line_data['words']
for i in range(len(words)-1):
seq = tuple((len(w[2]), w[2][0]) for w in words[i:i+2])
sequences[seq] += 1
return sequences
recurring_seqs = find_recurring_sequences(word_positions)
st.write("Common Word Sequences (length-initial patterns)")
seq_df = pd.DataFrame([
{'Sequence': ' → '.join([f"({l},{c})" for l,c in seq]),
'Count': count}
for seq, count in sorted(recurring_seqs.items(),
key=lambda x: x[1],
reverse=True)[:15]
])
st.dataframe(seq_df)
# 3. Position-Sensitive Character Distribution
pos_char_dist = defaultdict(lambda: defaultdict(int))
for line_data in word_positions:
for word_pos, (_, _, chars) in enumerate(line_data['words']):
for char_pos, char in enumerate(chars):
pos_char_dist[word_pos][char_pos, char] += 1
# Visualize for first 3 word positions
fig, axes = plt.subplots(1, 3, figsize=(15, 5))
for word_pos in range(3):
data = defaultdict(list)
for (char_pos, char), count in pos_char_dist[word_pos].items():
data['char_pos'].append(char_pos)
data['char'].append(char)
data['count'].append(count)
df = pd.DataFrame(data)
pivot = df.pivot(index='char', columns='char_pos', values='count')
sns.heatmap(pivot, ax=axes[word_pos], cmap='YlOrRd')
axes[word_pos].set_title(f'Word Position {word_pos+1}')
st.pyplot(fig)
st.subheader("4. Character Connection Patterns")
@st.cache_data
def generate_char_network(chars_list):
char_bigrams = Counter()
for chars in chars_list:
for i in range(len(chars)-1):
char_bigrams[tuple(chars[i:i+2])] += 1
return char_bigrams
char_bigrams = generate_char_network(chars_list)
# Create graph with explicit weight handling
G = nx.Graph()
edges_with_weights = []
# Get the total number of bigrams for percentage calculation
total_bigrams = sum(char_bigrams.values())
# Extract significant bigrams and their weights
for (char1, char2), count in char_bigrams.items():
if count > total_bigrams * 0.01: # Only include if more than 1% of total
edges_with_weights.append((char1, char2, count))
# Sort by weight and take top connections
edges_with_weights.sort(key=lambda x: x[2], reverse=True)
edges_with_weights = edges_with_weights[:50] # Top 50 connections
# Add edges to graph
for char1, char2, weight in edges_with_weights:
G.add_edge(char1, char2, weight=weight)
fig4 = plt.figure(figsize=(15, 15))
pos = nx.spring_layout(G, k=1, seed=42) # Fixed seed for stable layout
# Calculate edge widths directly from weights
weights = [G[u][v]['weight'] for u,v in G.edges()]
max_weight = max(weights) if weights else 1
edge_widths = [w/max_weight * 5 for w in weights]
# Draw network
nx.draw(G, pos,
with_labels=True,
node_color='lightblue',
node_size=2000,
font_size=14,
width=edge_widths)
plt.title("Character Connection Network")
st.pyplot(fig4, clear_figure=True)
|