File size: 4,655 Bytes
9f54a3b
 
 
 
dab5cc9
 
9f54a3b
e8f079f
9f54a3b
 
60eb20c
 
 
 
 
 
67a2453
60eb20c
 
 
 
8270bde
0ca86ba
9f54a3b
142827c
0029ae0
142827c
 
b8e69b4
0029ae0
e644846
0029ae0
 
 
 
 
 
 
 
 
 
 
40d82ac
6e0c914
0029ae0
 
b8e69b4
 
 
b713846
9f54a3b
 
 
60eb20c
142827c
 
8e38e68
 
142827c
 
 
 
0ca86ba
 
142827c
eabc41f
 
 
 
79898e5
 
d135f7b
79898e5
 
eabc41f
9f54a3b
b713846
9f54a3b
60eb20c
9f54a3b
 
b713846
 
9f54a3b
 
 
 
 
8d2df67
 
 
9f54a3b
8d2df67
9f54a3b
531ed05
9f54a3b
715fa41
 
f786670
9f54a3b
0441833
f9207df
f5989f3
f9207df
b7ab64c
 
f9207df
 
 
 
 
76c37db
b7ab64c
f9207df
 
0441833
9f54a3b
3bb7e5d
0029ae0
9f54a3b
 
 
60eb20c
9f54a3b
0029ae0
 
 
 
 
 
 
1e6fc39
 
0cafb36
ca83e2e
b7ab64c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import streamlit as st
from openai import OpenAI
import os
import sys
from dotenv import load_dotenv, dotenv_values
load_dotenv()

# initialize the client
client = OpenAI(
  base_url="https://api-inference.huggingface.co/v1",
  api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN')  # Replace with your token
)

# Create supported models
model_links = {
    "Mixtral-8x7B-Instruct-v0.1": "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "Mistral-Nemo-Instruct-2407": "mistralai/Mistral-Nemo-Instruct-2407",
    "Nous-Hermes-2-Mixtral-8x7B-DPO": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
    "Mistral-7B-Instruct-v0.1": "mistralai/Mistral-7B-Instruct-v0.1",
    "Mistral-7B-Instruct-v0.2": "mistralai/Mistral-7B-Instruct-v0.2",
    "Mistral-7B-Instruct-v0.3": "mistralai/Mistral-7B-Instruct-v0.3",
    "Mistral-Small-Instruct-2409": "mistralai/Mistral-Small-Instruct-2409",
}

def reset_conversation():
    #st.session_state.conversation = []
    st.session_state.messages = []
    return None

def ask_assistant_stream(st_model, st_messages, st_temp_value, st_max_tokens):
    response={}
    try:
        stream = client.chat.completions.create(
            model=st_model,
            messages=[
                {"role": m["role"], "content": m["content"]}
                for m in st_messages
            ],
            temperature=st_temp_value,
            stream=True,
            max_tokens=st_max_tokens,
        )
        response["stream"] = stream
    
    except Exception as e:
        pass

    return response

# Define the available models & Create the sidebar with the dropdown for model selection
models =[key for key in model_links.keys()]
selected_model = st.sidebar.selectbox("Select Model", models)

# Create a temperature slider
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5))

# Create a max_token slider
max_token_value = st.sidebar.slider('Select a max_token value', 1000, 9000, (5000))

#Add reset button to clear conversation
st.sidebar.button('Reset Chat', on_click=reset_conversation) #Reset button

# Create model description
st.sidebar.write(f"You're now chatting with **{selected_model}**")
st.sidebar.markdown("*Generated content may be inaccurate or false.*")

if "prev_option" not in st.session_state:
    st.session_state.prev_option = selected_model

#if st.session_state.prev_option != selected_model:
#    st.session_state.messages = []
    # st.write(f"Changed to {selected_model}")
#    st.session_state.prev_option = selected_model
#    reset_conversation()

#Pull in the model we want to use
#repo_id = model_links[selected_model]

st.subheader(f'{selected_model}')

# Set a default model
#if selected_model not in st.session_state:
#    st.session_state[selected_model] = model_links[selected_model] 

# Initialize chat history
if "messages" not in st.session_state:
    st.session_state.messages = []

def remove_message(position):
    st.toast("remove message no:" + position)

# Display chat messages from history on app rerun
pos = 0
for message in st.session_state.messages:
    pos=pos+1
    with st.chat_message(message["role"]):
        col1, col2 = st.columns([9,1])
        col1.markdown(message["content"])
        col2.button("remove", key="button_remove_message_"+str(pos), args=[pos], on_click=remove_message)


if "remove" not in st.session_state:
    st.session_state.remove= False

def remove_click():
    st.session_state.remove= True

if st.session_state.remove:
    lastmessage = st.session_state.messages.pop()
    prelastmessage = st.session_state.messages.pop()
    st.toast("popped msg: " + lastmessage["content"] + " // model: " + model_links[selected_model])
    st.session_state.remove = False
    st.rerun()



# Accept user input
if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"):
    # Display user message in chat message container and Add user message to chat history
    with st.chat_message("user"):
        st.markdown(prompt)
    st.session_state.messages.append({"role": "user", "content": prompt})
    
    # Display assistant response in chat message container
    assistant = ask_assistant_stream(model_links[selected_model], st.session_state.messages, temp_values, max_token_value)
    if "stream" in assistant: 
        with st.chat_message("assistant"):
            response = st.write_stream(assistant["stream"])
    else:
        with st.chat_message("assistant"):
            response = st.write("Failure")

    st.session_state.messages.append({"role": "assistant", "content": response})

if len(st.session_state.messages)>0:
    st.button("remove last conversation", key="removeButton", on_click=remove_click)