File size: 5,247 Bytes
9f54a3b
 
 
 
dab5cc9
 
9f54a3b
e8f079f
9f54a3b
 
60eb20c
 
 
 
 
 
67a2453
60eb20c
 
 
 
8270bde
0ca86ba
9f54a3b
002b092
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
142827c
 
 
 
 
 
 
b8e69b4
 
 
2e90884
6e0c914
 
 
 
 
 
 
 
 
 
 
 
 
76b65c9
6e0c914
 
 
b8e69b4
 
 
9f54a3b
 
 
 
 
 
60eb20c
142827c
 
8e38e68
 
142827c
 
 
 
 
0ca86ba
 
142827c
60eb20c
9f54a3b
eabc41f
 
 
 
 
 
 
 
d135f7b
eabc41f
 
 
 
 
9f54a3b
 
 
 
60eb20c
 
9f54a3b
 
 
be9d4b9
9f54a3b
 
 
 
 
 
 
 
 
 
 
 
0441833
 
 
 
 
 
 
 
 
 
9f54a3b
 
3bb7e5d
9f54a3b
 
 
 
 
60eb20c
9f54a3b
b8e69b4
9f54a3b
b8e69b4
1e6fc39
 
42ac914
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import streamlit as st
from openai import OpenAI
import os
import sys
from dotenv import load_dotenv, dotenv_values
load_dotenv()

# initialize the client
client = OpenAI(
  base_url="https://api-inference.huggingface.co/v1",
  api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN')  # Replace with your token
)

# Create supported models
model_links = {
    "Mixtral-8x7B-Instruct-v0.1": "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "Mistral-Nemo-Instruct-2407": "mistralai/Mistral-Nemo-Instruct-2407",
    "Nous-Hermes-2-Mixtral-8x7B-DPO": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
    "Mistral-7B-Instruct-v0.1": "mistralai/Mistral-7B-Instruct-v0.1",
    "Mistral-7B-Instruct-v0.2": "mistralai/Mistral-7B-Instruct-v0.2",
    "Mistral-7B-Instruct-v0.3": "mistralai/Mistral-7B-Instruct-v0.3",
    "Mistral-Small-Instruct-2409": "mistralai/Mistral-Small-Instruct-2409",
}

#Random dog images for error message
random_dog = ["0f476473-2d8b-415e-b944-483768418a95.jpg",
              "1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg",
              "526590d2-8817-4ff0-8c62-fdcba5306d02.jpg",
              "1326984c-39b0-492c-a773-f120d747a7e2.jpg",
              "42a98d03-5ed7-4b3b-af89-7c4876cb14c3.jpg",
              "8b3317ed-2083-42ac-a575-7ae45f9fdc0d.jpg",
              "ee17f54a-83ac-44a3-8a35-e89ff7153fb4.jpg",
              "027eef85-ccc1-4a66-8967-5d74f34c8bb4.jpg",
              "08f5398d-7f89-47da-a5cd-1ed74967dc1f.jpg",
              "0fd781ff-ec46-4bdc-a4e8-24f18bf07def.jpg",
              "0fb4aeee-f949-4c7b-a6d8-05bf0736bdd1.jpg",
              "6edac66e-c0de-4e69-a9d6-b2e6f6f9001b.jpg",
              "bfb9e165-c643-4993-9b3a-7e73571672a6.jpg"]



def reset_conversation():
    '''
    Resets Conversation
    '''
    st.session_state.conversation = []
    st.session_state.messages = []
    return None

def get_assistant_aswer(st_model, st_messages, st_temp_value, st_max_tokens):
    response = ""
    
    #try:
    stream = client.chat.completions.create(
        model=st_model,
        messages=[
            {"role": m["role"], "content": m["content"]}
            for m in st_messages
        ],
        temperature=st_temp_value,
        stream=True,
        max_tokens=st_max_tokens,
    )
    
    for chunk in stream:
        response = response + chunk.choices[0].delta.content

#    except Exception as e:
#        response = "😵‍💫 Looks like someone unplugged something!"

    return response

# Define the available models
models =[key for key in model_links.keys()]

# Create the sidebar with the dropdown for model selection
selected_model = st.sidebar.selectbox("Select Model", models)

# Create a temperature slider
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5))

# Create a max_token slider
max_token_value = st.sidebar.slider('Select a max_token value', 1000, 9000, (5000))

#Add reset button to clear conversation
st.sidebar.button('Reset Chat', on_click=reset_conversation) #Reset button


# Create model description
st.sidebar.write(f"You're now chatting with **{selected_model}**")
st.sidebar.markdown("*Generated content may be inaccurate or false.*")
# st.sidebar.markdown("\n[TypeGPT](https://typegpt.net).")




if "prev_option" not in st.session_state:
    st.session_state.prev_option = selected_model

if st.session_state.prev_option != selected_model:
    st.session_state.messages = []
    # st.write(f"Changed to {selected_model}")
    st.session_state.prev_option = selected_model
    reset_conversation()



#Pull in the model we want to use
repo_id = model_links[selected_model]


st.subheader(f'{selected_model}')
# # st.title(f'ChatBot Using {selected_model}')

# Set a default model
if selected_model not in st.session_state:
    st.session_state[selected_model] = model_links[selected_model] 

# Initialize chat history
if "messages" not in st.session_state:
    st.session_state.messages = []


# Display chat messages from history on app rerun
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])


if st.button("retry", key="retry"):
    lastmessage = st.session_state.messages.pop()
    st.toast("popped msg: " + lastmessage["content"] + " // model: " + model_links[selected_model])
    #response = get_assistant_aswer(model_links[selected_model], st.session_state.messages, temp_values, max_token_value)
#    with st.chat_message("assistant"):
#        st.write(response)
#        st.button("retry", on_click=retry_last())
#    st.session_state.messages.append({"role": "assistant", "content": response})



# Accept user input
if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"):
    # Display user message in chat message container
    with st.chat_message("user"):
        st.markdown(prompt)
    # Add user message to chat history
    st.session_state.messages.append({"role": "user", "content": prompt})
    
    # Display assistant response in chat message container
    response = get_assistant_aswer(model_links[selected_model], st.session_state.messages, temp_values, max_token_value)
    with st.chat_message("assistant"):
        st.write(response)

    st.session_state.messages.append({"role": "assistant", "content": response})