File size: 15,041 Bytes
6a62ffb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import logging

import torch
from torch import nn
from torch.nn import functional as F

from fairseq.models import (
    FairseqEncoder,
    FairseqEncoderDecoderModel,
    FairseqIncrementalDecoder,
    register_model,
    register_model_architecture,
)
from fairseq.modules import LSTMCellWithZoneOut, LocationAttention


logger = logging.getLogger(__name__)


def encoder_init(m):
    if isinstance(m, nn.Conv1d):
        nn.init.xavier_uniform_(m.weight, torch.nn.init.calculate_gain("relu"))


class Tacotron2Encoder(FairseqEncoder):
    def __init__(self, args, src_dict, embed_speaker):
        super().__init__(src_dict)
        self.padding_idx = src_dict.pad()
        self.embed_speaker = embed_speaker
        self.spk_emb_proj = None
        if embed_speaker is not None:
            self.spk_emb_proj = nn.Linear(
                args.encoder_embed_dim + args.speaker_embed_dim, args.encoder_embed_dim
            )

        self.embed_tokens = nn.Embedding(
            len(src_dict), args.encoder_embed_dim, padding_idx=self.padding_idx
        )

        assert args.encoder_conv_kernel_size % 2 == 1
        self.convolutions = nn.ModuleList(
            nn.Sequential(
                nn.Conv1d(
                    args.encoder_embed_dim,
                    args.encoder_embed_dim,
                    kernel_size=args.encoder_conv_kernel_size,
                    padding=((args.encoder_conv_kernel_size - 1) // 2),
                ),
                nn.BatchNorm1d(args.encoder_embed_dim),
                nn.ReLU(),
                nn.Dropout(args.encoder_dropout),
            )
            for _ in range(args.encoder_conv_layers)
        )

        self.lstm = nn.LSTM(
            args.encoder_embed_dim,
            args.encoder_embed_dim // 2,
            num_layers=args.encoder_lstm_layers,
            batch_first=True,
            bidirectional=True,
        )

        self.apply(encoder_init)

    def forward(self, src_tokens, src_lengths=None, speaker=None, **kwargs):
        x = self.embed_tokens(src_tokens)
        x = x.transpose(1, 2).contiguous()  # B x T x C -> B x C x T
        for conv in self.convolutions:
            x = conv(x)
        x = x.transpose(1, 2).contiguous()  # B x C x T -> B x T x C

        src_lengths = src_lengths.cpu().long()
        x = nn.utils.rnn.pack_padded_sequence(x, src_lengths, batch_first=True)
        x = self.lstm(x)[0]
        x = nn.utils.rnn.pad_packed_sequence(x, batch_first=True)[0]

        encoder_padding_mask = src_tokens.eq(self.padding_idx)

        if self.embed_speaker is not None:
            seq_len, bsz, _ = x.size()
            emb = self.embed_speaker(speaker).expand(seq_len, bsz, -1)
            x = self.spk_emb_proj(torch.cat([x, emb], dim=2))

        return {
            "encoder_out": [x],  # B x T x C
            "encoder_padding_mask": encoder_padding_mask,  # B x T
        }


class Prenet(nn.Module):
    def __init__(self, in_dim, n_layers, n_units, dropout):
        super().__init__()
        self.layers = nn.ModuleList(
            nn.Sequential(nn.Linear(in_dim if i == 0 else n_units, n_units), nn.ReLU())
            for i in range(n_layers)
        )
        self.dropout = dropout

    def forward(self, x):
        for layer in self.layers:
            x = F.dropout(layer(x), p=self.dropout)  # always applies dropout
        return x


class Postnet(nn.Module):
    def __init__(self, in_dim, n_channels, kernel_size, n_layers, dropout):
        super(Postnet, self).__init__()
        self.convolutions = nn.ModuleList()
        assert kernel_size % 2 == 1
        for i in range(n_layers):
            cur_layers = (
                [
                    nn.Conv1d(
                        in_dim if i == 0 else n_channels,
                        n_channels if i < n_layers - 1 else in_dim,
                        kernel_size=kernel_size,
                        padding=((kernel_size - 1) // 2),
                    ),
                    nn.BatchNorm1d(n_channels if i < n_layers - 1 else in_dim),
                ]
                + ([nn.Tanh()] if i < n_layers - 1 else [])
                + [nn.Dropout(dropout)]
            )
            nn.init.xavier_uniform_(
                cur_layers[0].weight,
                torch.nn.init.calculate_gain("tanh" if i < n_layers - 1 else "linear"),
            )
            self.convolutions.append(nn.Sequential(*cur_layers))

    def forward(self, x):
        x = x.transpose(1, 2)  # B x T x C -> B x C x T
        for conv in self.convolutions:
            x = conv(x)
        return x.transpose(1, 2)


def decoder_init(m):
    if isinstance(m, torch.nn.Conv1d):
        nn.init.xavier_uniform_(m.weight, torch.nn.init.calculate_gain("tanh"))


class Tacotron2Decoder(FairseqIncrementalDecoder):
    def __init__(self, args, src_dict):
        super().__init__(None)
        self.args = args
        self.n_frames_per_step = args.n_frames_per_step
        self.out_dim = args.output_frame_dim * args.n_frames_per_step

        self.prenet = Prenet(
            self.out_dim, args.prenet_layers, args.prenet_dim, args.prenet_dropout
        )

        # take prev_context, prev_frame, (speaker embedding) as input
        self.attention_lstm = LSTMCellWithZoneOut(
            args.zoneout,
            args.prenet_dim + args.encoder_embed_dim,
            args.decoder_lstm_dim,
        )

        # take attention_lstm output, attention_state, encoder_out as input
        self.attention = LocationAttention(
            args.attention_dim,
            args.encoder_embed_dim,
            args.decoder_lstm_dim,
            (1 + int(args.attention_use_cumprob)),
            args.attention_conv_dim,
            args.attention_conv_kernel_size,
        )

        # take attention_lstm output, context, (gated_latent) as input
        self.lstm = nn.ModuleList(
            LSTMCellWithZoneOut(
                args.zoneout,
                args.encoder_embed_dim + args.decoder_lstm_dim,
                args.decoder_lstm_dim,
            )
            for i in range(args.decoder_lstm_layers)
        )

        proj_in_dim = args.encoder_embed_dim + args.decoder_lstm_dim
        self.feat_proj = nn.Linear(proj_in_dim, self.out_dim)
        self.eos_proj = nn.Linear(proj_in_dim, 1)

        self.postnet = Postnet(
            self.out_dim,
            args.postnet_conv_dim,
            args.postnet_conv_kernel_size,
            args.postnet_layers,
            args.postnet_dropout,
        )

        self.ctc_proj = None
        if getattr(args, "ctc_weight", 0.0) > 0.0:
            self.ctc_proj = nn.Linear(self.out_dim, len(src_dict))

        self.apply(decoder_init)

    def _get_states(self, incremental_state, enc_out):
        bsz, in_len, _ = enc_out.size()
        alstm_h = self.get_incremental_state(incremental_state, "alstm_h")
        if alstm_h is None:
            alstm_h = enc_out.new_zeros(bsz, self.args.decoder_lstm_dim)
        alstm_c = self.get_incremental_state(incremental_state, "alstm_c")
        if alstm_c is None:
            alstm_c = enc_out.new_zeros(bsz, self.args.decoder_lstm_dim)

        lstm_h = self.get_incremental_state(incremental_state, "lstm_h")
        if lstm_h is None:
            lstm_h = [
                enc_out.new_zeros(bsz, self.args.decoder_lstm_dim)
                for _ in range(self.args.decoder_lstm_layers)
            ]
        lstm_c = self.get_incremental_state(incremental_state, "lstm_c")
        if lstm_c is None:
            lstm_c = [
                enc_out.new_zeros(bsz, self.args.decoder_lstm_dim)
                for _ in range(self.args.decoder_lstm_layers)
            ]

        attn_w = self.get_incremental_state(incremental_state, "attn_w")
        if attn_w is None:
            attn_w = enc_out.new_zeros(bsz, in_len)
        attn_w_cum = self.get_incremental_state(incremental_state, "attn_w_cum")
        if attn_w_cum is None:
            attn_w_cum = enc_out.new_zeros(bsz, in_len)
        return alstm_h, alstm_c, lstm_h, lstm_c, attn_w, attn_w_cum

    def _get_init_attn_c(self, enc_out, enc_mask):
        bsz = enc_out.size(0)
        if self.args.init_attn_c == "zero":
            return enc_out.new_zeros(bsz, self.args.encoder_embed_dim)
        elif self.args.init_attn_c == "avg":
            enc_w = (~enc_mask).type(enc_out.type())
            enc_w = enc_w / enc_w.sum(dim=1, keepdim=True)
            return torch.sum(enc_out * enc_w.unsqueeze(2), dim=1)
        else:
            raise ValueError(f"{self.args.init_attn_c} not supported")

    def forward(
        self,
        prev_output_tokens,
        encoder_out=None,
        incremental_state=None,
        target_lengths=None,
        **kwargs,
    ):
        enc_mask = encoder_out["encoder_padding_mask"]
        enc_out = encoder_out["encoder_out"][0]
        in_len = enc_out.size(1)

        if incremental_state is not None:
            prev_output_tokens = prev_output_tokens[:, -1:, :]
        bsz, out_len, _ = prev_output_tokens.size()

        prenet_out = self.prenet(prev_output_tokens)
        (alstm_h, alstm_c, lstm_h, lstm_c, attn_w, attn_w_cum) = self._get_states(
            incremental_state, enc_out
        )
        attn_ctx = self._get_init_attn_c(enc_out, enc_mask)

        attn_out = enc_out.new_zeros(bsz, in_len, out_len)
        feat_out = enc_out.new_zeros(bsz, out_len, self.out_dim)
        eos_out = enc_out.new_zeros(bsz, out_len)
        for t in range(out_len):
            alstm_in = torch.cat((attn_ctx, prenet_out[:, t, :]), dim=1)
            alstm_h, alstm_c = self.attention_lstm(alstm_in, (alstm_h, alstm_c))

            attn_state = attn_w.unsqueeze(1)
            if self.args.attention_use_cumprob:
                attn_state = torch.stack((attn_w, attn_w_cum), dim=1)
            attn_ctx, attn_w = self.attention(enc_out, enc_mask, alstm_h, attn_state)
            attn_w_cum = attn_w_cum + attn_w
            attn_out[:, :, t] = attn_w

            for i, cur_lstm in enumerate(self.lstm):
                if i == 0:
                    lstm_in = torch.cat((attn_ctx, alstm_h), dim=1)
                else:
                    lstm_in = torch.cat((attn_ctx, lstm_h[i - 1]), dim=1)
                lstm_h[i], lstm_c[i] = cur_lstm(lstm_in, (lstm_h[i], lstm_c[i]))

            proj_in = torch.cat((attn_ctx, lstm_h[-1]), dim=1)
            feat_out[:, t, :] = self.feat_proj(proj_in)
            eos_out[:, t] = self.eos_proj(proj_in).squeeze(1)
        self.attention.clear_cache()

        self.set_incremental_state(incremental_state, "alstm_h", alstm_h)
        self.set_incremental_state(incremental_state, "alstm_c", alstm_c)
        self.set_incremental_state(incremental_state, "lstm_h", lstm_h)
        self.set_incremental_state(incremental_state, "lstm_c", lstm_c)
        self.set_incremental_state(incremental_state, "attn_w", attn_w)
        self.set_incremental_state(incremental_state, "attn_w_cum", attn_w_cum)

        post_feat_out = feat_out + self.postnet(feat_out)
        eos_out = eos_out.view(bsz, out_len, 1)
        return post_feat_out, eos_out, {"attn": attn_out, "feature_out": feat_out}


@register_model("tacotron_2")
class Tacotron2Model(FairseqEncoderDecoderModel):
    """
    Implementation for https://arxiv.org/pdf/1712.05884.pdf
    """

    @staticmethod
    def add_args(parser):
        # encoder
        parser.add_argument("--encoder-dropout", type=float)
        parser.add_argument("--encoder-embed-dim", type=int)
        parser.add_argument("--encoder-conv-layers", type=int)
        parser.add_argument("--encoder-conv-kernel-size", type=int)
        parser.add_argument("--encoder-lstm-layers", type=int)
        # decoder
        parser.add_argument("--attention-dim", type=int)
        parser.add_argument("--attention-conv-dim", type=int)
        parser.add_argument("--attention-conv-kernel-size", type=int)
        parser.add_argument("--prenet-dropout", type=float)
        parser.add_argument("--prenet-layers", type=int)
        parser.add_argument("--prenet-dim", type=int)
        parser.add_argument("--postnet-dropout", type=float)
        parser.add_argument("--postnet-layers", type=int)
        parser.add_argument("--postnet-conv-dim", type=int)
        parser.add_argument("--postnet-conv-kernel-size", type=int)
        parser.add_argument("--init-attn-c", type=str)
        parser.add_argument("--attention-use-cumprob", action="store_true")
        parser.add_argument("--zoneout", type=float)
        parser.add_argument("--decoder-lstm-layers", type=int)
        parser.add_argument("--decoder-lstm-dim", type=int)
        parser.add_argument("--output-frame-dim", type=int)

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self._num_updates = 0

    @classmethod
    def build_model(cls, args, task):
        embed_speaker = task.get_speaker_embeddings(args)
        encoder = Tacotron2Encoder(args, task.src_dict, embed_speaker)
        decoder = Tacotron2Decoder(args, task.src_dict)
        return cls(encoder, decoder)

    def forward_encoder(self, src_tokens, src_lengths, **kwargs):
        return self.encoder(src_tokens, src_lengths=src_lengths, **kwargs)

    def set_num_updates(self, num_updates):
        super().set_num_updates(num_updates)
        self._num_updates = num_updates


@register_model_architecture("tacotron_2", "tacotron_2")
def base_architecture(args):
    # encoder
    args.encoder_dropout = getattr(args, "encoder_dropout", 0.5)
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512)
    args.encoder_conv_layers = getattr(args, "encoder_conv_layers", 3)
    args.encoder_conv_kernel_size = getattr(args, "encoder_conv_kernel_size", 5)
    args.encoder_lstm_layers = getattr(args, "encoder_lstm_layers", 1)
    # decoder
    args.attention_dim = getattr(args, "attention_dim", 128)
    args.attention_conv_dim = getattr(args, "attention_conv_dim", 32)
    args.attention_conv_kernel_size = getattr(args, "attention_conv_kernel_size", 15)
    args.prenet_dropout = getattr(args, "prenet_dropout", 0.5)
    args.prenet_layers = getattr(args, "prenet_layers", 2)
    args.prenet_dim = getattr(args, "prenet_dim", 256)
    args.postnet_dropout = getattr(args, "postnet_dropout", 0.5)
    args.postnet_layers = getattr(args, "postnet_layers", 5)
    args.postnet_conv_dim = getattr(args, "postnet_conv_dim", 512)
    args.postnet_conv_kernel_size = getattr(args, "postnet_conv_kernel_size", 5)
    args.init_attn_c = getattr(args, "init_attn_c", "zero")
    args.attention_use_cumprob = getattr(args, "attention_use_cumprob", True)
    args.zoneout = getattr(args, "zoneout", 0.1)
    args.decoder_lstm_layers = getattr(args, "decoder_lstm_layers", 2)
    args.decoder_lstm_dim = getattr(args, "decoder_lstm_dim", 1024)
    args.output_frame_dim = getattr(args, "output_frame_dim", 80)