Spaces:
Running
Running
File size: 11,747 Bytes
6a62ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import copy
import logging
import os
from typing import Any, Dict, Iterator, List
import torch
from omegaconf import open_dict
from torch import nn
from fairseq import utils
from fairseq.data import encoders
logger = logging.getLogger(__name__)
def from_pretrained(
model_name_or_path,
checkpoint_file="model.pt",
data_name_or_path=".",
archive_map=None,
**kwargs
):
from fairseq import checkpoint_utils, file_utils
if archive_map is not None:
if model_name_or_path in archive_map:
model_name_or_path = archive_map[model_name_or_path]
if data_name_or_path is not None and data_name_or_path in archive_map:
data_name_or_path = archive_map[data_name_or_path]
# allow archive_map to set default arg_overrides (e.g., tokenizer, bpe)
# for each model
if isinstance(model_name_or_path, dict):
for k, v in model_name_or_path.items():
if k == "checkpoint_file":
checkpoint_file = v
elif (
k != "path"
# only set kwargs that don't already have overrides
and k not in kwargs
):
kwargs[k] = v
model_name_or_path = model_name_or_path["path"]
model_path = file_utils.load_archive_file(model_name_or_path)
# convenience hack for loading data and BPE codes from model archive
if data_name_or_path.startswith("."):
kwargs["data"] = os.path.abspath(os.path.join(model_path, data_name_or_path))
else:
kwargs["data"] = file_utils.load_archive_file(data_name_or_path)
for file, arg in {
"code": "bpe_codes",
"bpecodes": "bpe_codes",
"sentencepiece.bpe.model": "sentencepiece_model",
"merges.txt": "bpe_merges",
"vocab.json": "bpe_vocab",
}.items():
path = os.path.join(model_path, file)
if os.path.exists(path):
kwargs[arg] = path
if "user_dir" in kwargs:
utils.import_user_module(argparse.Namespace(user_dir=kwargs["user_dir"]))
model_path = [
os.path.join(model_path, cpt) for cpt in checkpoint_file.split(os.pathsep)
]
if "is_vocoder" in kwargs:
args = {"data": kwargs["data"], "model_path": model_path}
task = None
models = None
else:
models, args, task = checkpoint_utils.load_model_ensemble_and_task(
model_path,
arg_overrides=kwargs,
)
if "generation_args" in kwargs and kwargs["generation_args"]:
for key in kwargs["generation_args"]:
setattr(args["generation"], key, kwargs["generation_args"][key])
return {
"args": args,
"task": task,
"models": models,
}
class GeneratorHubInterface(nn.Module):
"""
PyTorch Hub interface for generating sequences from a pre-trained
translation or language model.
"""
def __init__(self, cfg, task, models):
super().__init__()
self.cfg = cfg
self.task = task
self.models = nn.ModuleList(models)
self.src_dict = task.source_dictionary
self.tgt_dict = task.target_dictionary
# optimize model for generation
for model in self.models:
model.prepare_for_inference_(cfg)
# Load alignment dictionary for unknown word replacement
# (None if no unknown word replacement, empty if no path to align dictionary)
self.align_dict = utils.load_align_dict(cfg.generation.replace_unk)
self.tokenizer = encoders.build_tokenizer(cfg.tokenizer)
self.bpe = encoders.build_bpe(cfg.bpe)
self.max_positions = utils.resolve_max_positions(
self.task.max_positions(), *[model.max_positions() for model in models]
)
# this is useful for determining the device
self.register_buffer("_float_tensor", torch.tensor([0], dtype=torch.float))
@property
def device(self):
return self._float_tensor.device
def translate(
self, sentences: List[str], beam: int = 5, verbose: bool = False, **kwargs
) -> List[str]:
return self.sample(sentences, beam, verbose, **kwargs)
def sample(
self, sentences: List[str], beam: int = 1, verbose: bool = False, **kwargs
) -> List[str]:
if isinstance(sentences, str):
return self.sample([sentences], beam=beam, verbose=verbose, **kwargs)[0]
tokenized_sentences = [self.encode(sentence) for sentence in sentences]
batched_hypos = self.generate(tokenized_sentences, beam, verbose, **kwargs)
return [self.decode(hypos[0]["tokens"]) for hypos in batched_hypos]
def score(
self, sentences: List[str], replace_newline_with_eos: bool = False, **kwargs
):
if isinstance(sentences, str):
return self.score(
[sentences], replace_newline_with_eos=replace_newline_with_eos, **kwargs
)[0]
def encode(sentence):
if replace_newline_with_eos:
return torch.cat([self.encode(line) for line in sentence.splitlines()])
else:
return self.encode(sentence)
# NOTE: this doesn't support translation tasks currently
tokenized_sentences = [encode(sentence) for sentence in sentences]
return [
hypos[0]
for hypos in self.generate(
tokenized_sentences, score_reference=True, **kwargs
)
]
def generate(
self,
tokenized_sentences: List[torch.LongTensor],
beam: int = 5,
verbose: bool = False,
skip_invalid_size_inputs=False,
inference_step_args=None,
prefix_allowed_tokens_fn=None,
**kwargs
) -> List[List[Dict[str, torch.Tensor]]]:
if torch.is_tensor(tokenized_sentences) and tokenized_sentences.dim() == 1:
return self.generate(
tokenized_sentences.unsqueeze(0), beam=beam, verbose=verbose, **kwargs
)[0]
# build generator using current args as well as any kwargs
gen_args = copy.deepcopy(self.cfg.generation)
with open_dict(gen_args):
gen_args.beam = beam
for k, v in kwargs.items():
setattr(gen_args, k, v)
generator = self.task.build_generator(
self.models,
gen_args,
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
)
inference_step_args = inference_step_args or {}
results = []
for batch in self._build_batches(tokenized_sentences, skip_invalid_size_inputs):
batch = utils.apply_to_sample(lambda t: t.to(self.device), batch)
translations = self.task.inference_step(
generator, self.models, batch, **inference_step_args
)
for id, hypos in zip(batch["id"].tolist(), translations):
results.append((id, hypos))
# sort output to match input order
outputs = [hypos for _, hypos in sorted(results, key=lambda x: x[0])]
if verbose:
def getarg(name, default):
return getattr(gen_args, name, getattr(self.cfg, name, default))
for source_tokens, target_hypotheses in zip(tokenized_sentences, outputs):
src_str_with_unk = self.string(source_tokens)
logger.info("S\t{}".format(src_str_with_unk))
for hypo in target_hypotheses:
hypo_str = self.decode(hypo["tokens"])
logger.info("H\t{}\t{}".format(hypo["score"], hypo_str))
logger.info(
"P\t{}".format(
" ".join(
map(
lambda x: "{:.4f}".format(x),
hypo["positional_scores"].tolist(),
)
)
)
)
if hypo["alignment"] is not None and getarg(
"print_alignment", False
):
logger.info(
"A\t{}".format(
" ".join(
[
"{}-{}".format(src_idx, tgt_idx)
for src_idx, tgt_idx in hypo["alignment"]
]
)
)
)
return outputs
def encode(self, sentence: str) -> torch.LongTensor:
sentence = self.tokenize(sentence)
sentence = self.apply_bpe(sentence)
return self.binarize(sentence)
def decode(self, tokens: torch.LongTensor) -> str:
sentence = self.string(tokens)
sentence = self.remove_bpe(sentence)
return self.detokenize(sentence)
def tokenize(self, sentence: str) -> str:
if self.tokenizer is not None:
sentence = self.tokenizer.encode(sentence)
return sentence
def detokenize(self, sentence: str) -> str:
if self.tokenizer is not None:
sentence = self.tokenizer.decode(sentence)
return sentence
def apply_bpe(self, sentence: str) -> str:
if self.bpe is not None:
sentence = self.bpe.encode(sentence)
return sentence
def remove_bpe(self, sentence: str) -> str:
if self.bpe is not None:
sentence = self.bpe.decode(sentence)
return sentence
def binarize(self, sentence: str) -> torch.LongTensor:
return self.src_dict.encode_line(sentence, add_if_not_exist=False).long()
def string(self, tokens: torch.LongTensor) -> str:
return self.tgt_dict.string(tokens)
def _build_batches(
self, tokens: List[List[int]], skip_invalid_size_inputs: bool
) -> Iterator[Dict[str, Any]]:
lengths = torch.LongTensor([t.numel() for t in tokens])
batch_iterator = self.task.get_batch_iterator(
dataset=self.task.build_dataset_for_inference(tokens, lengths),
max_tokens=self.cfg.dataset.max_tokens,
max_sentences=self.cfg.dataset.batch_size,
max_positions=self.max_positions,
ignore_invalid_inputs=skip_invalid_size_inputs,
disable_iterator_cache=True,
).next_epoch_itr(shuffle=False)
return batch_iterator
class BPEHubInterface(object):
"""PyTorch Hub interface for Byte-Pair Encoding (BPE)."""
def __init__(self, bpe, **kwargs):
super().__init__()
args = argparse.Namespace(bpe=bpe, **kwargs)
self.bpe = encoders.build_bpe(args)
assert self.bpe is not None
def encode(self, sentence: str) -> str:
return self.bpe.encode(sentence)
def decode(self, sentence: str) -> str:
return self.bpe.decode(sentence)
class TokenizerHubInterface(object):
"""PyTorch Hub interface for tokenization."""
def __init__(self, tokenizer, **kwargs):
super().__init__()
args = argparse.Namespace(tokenizer=tokenizer, **kwargs)
self.tokenizer = encoders.build_tokenizer(args)
assert self.tokenizer is not None
def encode(self, sentence: str) -> str:
return self.tokenizer.encode(sentence)
def decode(self, sentence: str) -> str:
return self.tokenizer.decode(sentence)
|