File size: 11,747 Bytes
6a62ffb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import argparse
import copy
import logging
import os
from typing import Any, Dict, Iterator, List

import torch
from omegaconf import open_dict
from torch import nn

from fairseq import utils
from fairseq.data import encoders

logger = logging.getLogger(__name__)


def from_pretrained(
    model_name_or_path,
    checkpoint_file="model.pt",
    data_name_or_path=".",
    archive_map=None,
    **kwargs
):
    from fairseq import checkpoint_utils, file_utils

    if archive_map is not None:
        if model_name_or_path in archive_map:
            model_name_or_path = archive_map[model_name_or_path]
        if data_name_or_path is not None and data_name_or_path in archive_map:
            data_name_or_path = archive_map[data_name_or_path]

        # allow archive_map to set default arg_overrides (e.g., tokenizer, bpe)
        # for each model
        if isinstance(model_name_or_path, dict):
            for k, v in model_name_or_path.items():
                if k == "checkpoint_file":
                    checkpoint_file = v
                elif (
                    k != "path"
                    # only set kwargs that don't already have overrides
                    and k not in kwargs
                ):
                    kwargs[k] = v
            model_name_or_path = model_name_or_path["path"]

    model_path = file_utils.load_archive_file(model_name_or_path)

    # convenience hack for loading data and BPE codes from model archive
    if data_name_or_path.startswith("."):
        kwargs["data"] = os.path.abspath(os.path.join(model_path, data_name_or_path))
    else:
        kwargs["data"] = file_utils.load_archive_file(data_name_or_path)
    for file, arg in {
        "code": "bpe_codes",
        "bpecodes": "bpe_codes",
        "sentencepiece.bpe.model": "sentencepiece_model",
        "merges.txt": "bpe_merges",
        "vocab.json": "bpe_vocab",
    }.items():
        path = os.path.join(model_path, file)
        if os.path.exists(path):
            kwargs[arg] = path

    if "user_dir" in kwargs:
        utils.import_user_module(argparse.Namespace(user_dir=kwargs["user_dir"]))

    model_path = [
        os.path.join(model_path, cpt) for cpt in checkpoint_file.split(os.pathsep)
    ]

    if "is_vocoder" in kwargs:
        args = {"data": kwargs["data"], "model_path": model_path}
        task = None
        models = None
    else:
        models, args, task = checkpoint_utils.load_model_ensemble_and_task(
            model_path,
            arg_overrides=kwargs,
        )
    if "generation_args" in kwargs and kwargs["generation_args"]:
        for key in kwargs["generation_args"]:
            setattr(args["generation"], key, kwargs["generation_args"][key])

    return {
        "args": args,
        "task": task,
        "models": models,
    }


class GeneratorHubInterface(nn.Module):
    """
    PyTorch Hub interface for generating sequences from a pre-trained
    translation or language model.
    """

    def __init__(self, cfg, task, models):
        super().__init__()
        self.cfg = cfg
        self.task = task
        self.models = nn.ModuleList(models)
        self.src_dict = task.source_dictionary
        self.tgt_dict = task.target_dictionary

        # optimize model for generation
        for model in self.models:
            model.prepare_for_inference_(cfg)

        # Load alignment dictionary for unknown word replacement
        # (None if no unknown word replacement, empty if no path to align dictionary)
        self.align_dict = utils.load_align_dict(cfg.generation.replace_unk)

        self.tokenizer = encoders.build_tokenizer(cfg.tokenizer)
        self.bpe = encoders.build_bpe(cfg.bpe)

        self.max_positions = utils.resolve_max_positions(
            self.task.max_positions(), *[model.max_positions() for model in models]
        )

        # this is useful for determining the device
        self.register_buffer("_float_tensor", torch.tensor([0], dtype=torch.float))

    @property
    def device(self):
        return self._float_tensor.device

    def translate(
        self, sentences: List[str], beam: int = 5, verbose: bool = False, **kwargs
    ) -> List[str]:
        return self.sample(sentences, beam, verbose, **kwargs)

    def sample(
        self, sentences: List[str], beam: int = 1, verbose: bool = False, **kwargs
    ) -> List[str]:
        if isinstance(sentences, str):
            return self.sample([sentences], beam=beam, verbose=verbose, **kwargs)[0]
        tokenized_sentences = [self.encode(sentence) for sentence in sentences]
        batched_hypos = self.generate(tokenized_sentences, beam, verbose, **kwargs)
        return [self.decode(hypos[0]["tokens"]) for hypos in batched_hypos]

    def score(
        self, sentences: List[str], replace_newline_with_eos: bool = False, **kwargs
    ):
        if isinstance(sentences, str):
            return self.score(
                [sentences], replace_newline_with_eos=replace_newline_with_eos, **kwargs
            )[0]

        def encode(sentence):
            if replace_newline_with_eos:
                return torch.cat([self.encode(line) for line in sentence.splitlines()])
            else:
                return self.encode(sentence)

        # NOTE: this doesn't support translation tasks currently
        tokenized_sentences = [encode(sentence) for sentence in sentences]
        return [
            hypos[0]
            for hypos in self.generate(
                tokenized_sentences, score_reference=True, **kwargs
            )
        ]

    def generate(
        self,
        tokenized_sentences: List[torch.LongTensor],
        beam: int = 5,
        verbose: bool = False,
        skip_invalid_size_inputs=False,
        inference_step_args=None,
        prefix_allowed_tokens_fn=None,
        **kwargs
    ) -> List[List[Dict[str, torch.Tensor]]]:
        if torch.is_tensor(tokenized_sentences) and tokenized_sentences.dim() == 1:
            return self.generate(
                tokenized_sentences.unsqueeze(0), beam=beam, verbose=verbose, **kwargs
            )[0]

        # build generator using current args as well as any kwargs
        gen_args = copy.deepcopy(self.cfg.generation)
        with open_dict(gen_args):
            gen_args.beam = beam
            for k, v in kwargs.items():
                setattr(gen_args, k, v)
        generator = self.task.build_generator(
            self.models,
            gen_args,
            prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
        )

        inference_step_args = inference_step_args or {}
        results = []
        for batch in self._build_batches(tokenized_sentences, skip_invalid_size_inputs):
            batch = utils.apply_to_sample(lambda t: t.to(self.device), batch)
            translations = self.task.inference_step(
                generator, self.models, batch, **inference_step_args
            )
            for id, hypos in zip(batch["id"].tolist(), translations):
                results.append((id, hypos))

        # sort output to match input order
        outputs = [hypos for _, hypos in sorted(results, key=lambda x: x[0])]

        if verbose:

            def getarg(name, default):
                return getattr(gen_args, name, getattr(self.cfg, name, default))

            for source_tokens, target_hypotheses in zip(tokenized_sentences, outputs):
                src_str_with_unk = self.string(source_tokens)
                logger.info("S\t{}".format(src_str_with_unk))
                for hypo in target_hypotheses:
                    hypo_str = self.decode(hypo["tokens"])
                    logger.info("H\t{}\t{}".format(hypo["score"], hypo_str))
                    logger.info(
                        "P\t{}".format(
                            " ".join(
                                map(
                                    lambda x: "{:.4f}".format(x),
                                    hypo["positional_scores"].tolist(),
                                )
                            )
                        )
                    )
                    if hypo["alignment"] is not None and getarg(
                        "print_alignment", False
                    ):
                        logger.info(
                            "A\t{}".format(
                                " ".join(
                                    [
                                        "{}-{}".format(src_idx, tgt_idx)
                                        for src_idx, tgt_idx in hypo["alignment"]
                                    ]
                                )
                            )
                        )
        return outputs

    def encode(self, sentence: str) -> torch.LongTensor:
        sentence = self.tokenize(sentence)
        sentence = self.apply_bpe(sentence)
        return self.binarize(sentence)

    def decode(self, tokens: torch.LongTensor) -> str:
        sentence = self.string(tokens)
        sentence = self.remove_bpe(sentence)
        return self.detokenize(sentence)

    def tokenize(self, sentence: str) -> str:
        if self.tokenizer is not None:
            sentence = self.tokenizer.encode(sentence)
        return sentence

    def detokenize(self, sentence: str) -> str:
        if self.tokenizer is not None:
            sentence = self.tokenizer.decode(sentence)
        return sentence

    def apply_bpe(self, sentence: str) -> str:
        if self.bpe is not None:
            sentence = self.bpe.encode(sentence)
        return sentence

    def remove_bpe(self, sentence: str) -> str:
        if self.bpe is not None:
            sentence = self.bpe.decode(sentence)
        return sentence

    def binarize(self, sentence: str) -> torch.LongTensor:
        return self.src_dict.encode_line(sentence, add_if_not_exist=False).long()

    def string(self, tokens: torch.LongTensor) -> str:
        return self.tgt_dict.string(tokens)

    def _build_batches(
        self, tokens: List[List[int]], skip_invalid_size_inputs: bool
    ) -> Iterator[Dict[str, Any]]:
        lengths = torch.LongTensor([t.numel() for t in tokens])
        batch_iterator = self.task.get_batch_iterator(
            dataset=self.task.build_dataset_for_inference(tokens, lengths),
            max_tokens=self.cfg.dataset.max_tokens,
            max_sentences=self.cfg.dataset.batch_size,
            max_positions=self.max_positions,
            ignore_invalid_inputs=skip_invalid_size_inputs,
            disable_iterator_cache=True,
        ).next_epoch_itr(shuffle=False)
        return batch_iterator


class BPEHubInterface(object):
    """PyTorch Hub interface for Byte-Pair Encoding (BPE)."""

    def __init__(self, bpe, **kwargs):
        super().__init__()
        args = argparse.Namespace(bpe=bpe, **kwargs)
        self.bpe = encoders.build_bpe(args)
        assert self.bpe is not None

    def encode(self, sentence: str) -> str:
        return self.bpe.encode(sentence)

    def decode(self, sentence: str) -> str:
        return self.bpe.decode(sentence)


class TokenizerHubInterface(object):
    """PyTorch Hub interface for tokenization."""

    def __init__(self, tokenizer, **kwargs):
        super().__init__()
        args = argparse.Namespace(tokenizer=tokenizer, **kwargs)
        self.tokenizer = encoders.build_tokenizer(args)
        assert self.tokenizer is not None

    def encode(self, sentence: str) -> str:
        return self.tokenizer.encode(sentence)

    def decode(self, sentence: str) -> str:
        return self.tokenizer.decode(sentence)