Spaces:
Build error
Build error
File size: 1,397 Bytes
a89dfce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import gradio as gr
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
from PIL import Image
import torch
# Load model and processor
model_name = "facebook/deit-base-distilled-patch16-224"
extractor = AutoFeatureExtractor.from_pretrained(model_name)
model = AutoModelForImageClassification.from_pretrained(model_name)
cat_keywords = ["cat", "kitten", "feline", "tabby", "siamese", "persian", "egyptian cat"]
def detect_cat(img):
inputs = extractor(images=img, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs).logits
probs = torch.softmax(outputs, dim=-1)
predicted_class = torch.argmax(probs).item()
confidence = probs[0][predicted_class].item()
label = model.config.id2label[predicted_class].lower()
if confidence < 0.60:
return f"🤔 Not confident it's a cat. ({label}, {confidence:.2f})"
elif any(k in label for k in cat_keywords):
return f"😺 Yes, it's a cat! ({label}, confidence: {confidence:.2f})"
else:
return f"🐶 Nope, not a cat. ({label}, confidence: {confidence:.2f})"
gr.Interface(
fn=detect_cat,
inputs=gr.Image(type="pil", label="Upload your image 🖼️", height=300),
outputs=gr.Textbox(label="🐾 Result"),
title="😼 Is It a Cat?",
description="Upload an image to check if there's a cat in it.",
theme="default"
).launch()ß |