File size: 6,269 Bytes
57746f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import torch
import torch.nn as nn
import yaml
import sys
sys.path.append(".")
sys.path.append("submodules")
sys.path.append("submodules/mast3r")
from mast3r.model import AsymmetricMASt3R
from src.ptv3 import PTV3
from src.gaussian_head import GaussianHead
from src.utils.points_process import merge_points
from src.losses import GaussianLoss
from src.lseg import LSegFeatureExtractor
import argparse
class LSM_MASt3R(nn.Module):
def __init__(self,
mast3r_config,
point_transformer_config,
gaussian_head_config,
lseg_config,
):
super().__init__()
# self.config
self.config = {
'mast3r_config': mast3r_config,
'point_transformer_config': point_transformer_config,
'gaussian_head_config': gaussian_head_config,
'lseg_config': lseg_config
}
# Initialize AsymmetricMASt3R
self.mast3r = AsymmetricMASt3R.from_pretrained(**mast3r_config)
# Freeze MASt3R parameters
for param in self.mast3r.parameters():
param.requires_grad = False
self.mast3r.eval()
# Initialize PointTransformerV3
self.point_transformer = PTV3(**point_transformer_config)
# Initialize the gaussian head
self.gaussian_head = GaussianHead(**gaussian_head_config)
# Initialize the lseg feature extractor
self.lseg_feature_extractor = LSegFeatureExtractor.from_pretrained(**lseg_config)
for param in self.lseg_feature_extractor.parameters():
param.requires_grad = False
self.lseg_feature_extractor.eval()
# Define two linear layers
d_gs_feats = gaussian_head_config.get('d_gs_feats', 32)
self.feature_reduction = nn.Sequential(
nn.Conv2d(512, d_gs_feats, kernel_size=1),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
) # (b, 512, h//2, w//2) -> (b, d_features, h, w)
self.feature_expansion = nn.Sequential(
nn.Conv2d(d_gs_feats, 512, kernel_size=1),
nn.Upsample(scale_factor=0.5, mode='bilinear', align_corners=True)
) # (b, d_features, h, w) -> (b, 512, h//2, w//2)
def forward(self, view1, view2):
# AsymmetricMASt3R forward pass
mast3r_output = self.mast3r(view1, view2)
# merge points from two views
data_dict = merge_points(mast3r_output, view1, view2)
# PointTransformerV3 forward pass
point_transformer_output = self.point_transformer(data_dict)
# extract lseg features
lseg_features = self.extract_lseg_features(view1, view2)
# Gaussian head forward pass
final_output = self.gaussian_head(point_transformer_output, lseg_features)
return final_output
def extract_lseg_features(self, view1, view2):
# concat view1 and view2
img = torch.cat([view1['img'], view2['img']], dim=0) # (v*b, 3, h, w)
# extract features
lseg_features = self.lseg_feature_extractor.extract_features(img) # (v*b, 512, h//2, w//2)
# reduce dimensions
lseg_features = self.feature_reduction(lseg_features) # (v*b, d_features, h, w)
return lseg_features
@staticmethod
def from_pretrained(checkpoint_path, device='cuda'):
# Load the checkpoint
ckpt = torch.load(checkpoint_path, map_location='cpu')
# Extract the configuration from the checkpoint
config = ckpt['args']
# Create a new instance of LSM_MASt3R
model = eval(config.model)
# Load the state dict
model.load_state_dict(ckpt['model'])
# Move the model to the specified device
model = model.to(device)
return model
def state_dict(self, destination=None, prefix='', keep_vars=False):
# 获取所有参数的state_dict
full_state_dict = super().state_dict(destination=destination, prefix=prefix, keep_vars=keep_vars)
# 只保留需要训练的参数
trainable_state_dict = {
k: v for k, v in full_state_dict.items()
if not (k.startswith('mast3r.') or k.startswith('lseg_feature_extractor.'))
}
return trainable_state_dict
def load_state_dict(self, state_dict, strict=True):
# 获取当前模型的完整state_dict
model_state = super().state_dict()
# 只更新需要训练的参数
for k in list(state_dict.keys()):
if k in model_state and not (k.startswith('mast3r.') or k.startswith('lseg_feature_extractor.')):
model_state[k] = state_dict[k]
# 使用更新后的state_dict加载模型
super().load_state_dict(model_state, strict=False)
if __name__ == "__main__":
from torch.utils.data import DataLoader
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint', type=str)
args = parser.parse_args()
# Load config
with open("configs/model_config.yaml", "r") as f:
config = yaml.safe_load(f)
# Initialize model
if args.checkpoint is not None:
model = LSM_MASt3R.from_pretrained(args.checkpoint, device='cuda')
else:
model = LSM_MASt3R(**config).to('cuda')
model.eval()
# Print model
print(model)
# Load dataset
from src.datasets.scannet import Scannet
dataset = Scannet(split='train', ROOT="data/scannet_processed", resolution=[(512, 384)])
# Print dataset
print(dataset)
# Test model
data_loader = DataLoader(dataset, batch_size=3, shuffle=True)
data = next(iter(data_loader))
# move data to cuda
for view in data:
view['img'] = view['img'].to('cuda')
view['depthmap'] = view['depthmap'].to('cuda')
view['camera_pose'] = view['camera_pose'].to('cuda')
view['camera_intrinsics'] = view['camera_intrinsics'].to('cuda')
# Forward pass
output = model(*data[:2])
# Loss
loss = GaussianLoss()
loss_value = loss(*data, *output, model)
print(loss_value)
|