File size: 16,719 Bytes
fb5f46a 44f6bf2 fb5f46a b4eef7c fb5f46a b4eef7c fb5f46a 7b4fc66 fb5f46a 44f6bf2 fb5f46a b4eef7c fb5f46a b4eef7c fb5f46a b4eef7c fb5f46a b4eef7c fb5f46a b4eef7c fb5f46a b4eef7c fb5f46a b4eef7c fb5f46a 44f6bf2 fb5f46a 44f6bf2 abc61ee 44f6bf2 abc61ee b4eef7c fb5f46a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
import matplotlib
from itertools import chain
import os
os.environ['MPLCONFIGDIR'] = os.getcwd() + "/configs/"
import re
import hnswlib
import string
import random
import shutil
import pickle
import numpy as np
import pandas as pd
from itertools import chain
from matplotlib.figure import Figure
import matchms.filtering as msfilters
from hnswlib import Index
from rdkit import Chem
from rdkit.Chem import Draw, rdFMCS
from molmass import Formula
from matchms.Spectrum import Spectrum
from matchms.importing import load_from_mgf,load_from_msp
from gensim.models import Word2Vec
from core.identification import identify_unknown, match_spectrum
import matplotlib.pyplot as plt
from matplotlib.figure import Figure
import gradio as gr
from matchms.plotting import plot_spectrum
from matchms.importing import load_from_msp,load_from_mgf
from matplotlib import pyplot as plt
import matplotlib
import numpy as np
import pandas as pd
from rdkit import Chem
from rdkit.Chem import Draw
import os
from zipfile import ZipFile
import time
import pickle
from matchms import filtering as msfilters
from rdkit import Chem
from rdkit.Chem import Draw, rdFMCS
from molmass import Formula
from matchms.plotting import plot_spectra_mirror
from zipfile import ZipFile
import hashlib
import zipfile
matplotlib.use('Agg')
default_index_positive = 'data/references_index_positive_spec2vec.bin'
default_index_negative = 'data/references_index_negative_spec2vec.bin'
default_reference_positive = 'data/references_spectrums_positive.pickle'
default_reference_negative = 'data/references_spectrums_negative.pickle'
print('Start Loading database')
default_database = pd.read_csv('data/DeepMassStructureDB-v1.0.csv', low_memory=False)
print('Start Loading Word2Vec')
deepmass_positive = Word2Vec.load("model/Ms2Vec_allGNPSpositive.hdf5")
deepmass_negative = Word2Vec.load("model/Ms2Vec_allGNPSnegative.hdf5")
print('Start Loading negative reference')
with open(default_reference_negative, 'rb') as file:
reference_negative = pickle.load(file)
print('Start Loading positive reference')
with open(default_reference_positive, 'rb') as file:
reference_positive = pickle.load(file)
print('Start Loading hnsw index')
index_negative = Index(space = 'l2', dim = 300)
index_negative.load_index(default_index_negative)
index_positive = Index(space = 'l2', dim = 300)
index_positive.load_index(default_index_positive)
precursors_positive = np.array([s.get('precursor_mz') for s in reference_positive])
precursors_negative = np.array([s.get('precursor_mz') for s in reference_negative])
print('Finish!!!')
print('-'*100)
def identify_pos(spectrum):
return identify_unknown(spectrum,index_positive,deepmass_positive,reference_positive,default_database)
def identify_neg(spectrum):
return identify_unknown(spectrum,index_negative,deepmass_negative,reference_negative,default_database)
def match_pos(spectrum):
return match_spectrum(spectrum,precursors_positive,reference_positive)
def match_neg(spectrum):
return match_spectrum(spectrum,precursors_negative,reference_negative)
def plot_2_spectrum(spectrum,reference,loss=False):
mz, abunds = spectrum.peaks.mz, spectrum.peaks.intensities
mz1, abunds1 = reference.peaks.mz, reference.peaks.intensities
if loss:
try:
spectrum = msfilters.add_parent_mass(spectrum)
spectrum = msfilters.add_losses(spectrum, loss_mz_from=10.0, loss_mz_to=2000.0)
reference = msfilters.add_parent_mass(reference)
reference = msfilters.add_losses(reference, loss_mz_from=10.0, loss_mz_to=2000.0)
mz, abunds = spectrum.losses.mz, spectrum.losses.intensities
mz1, abunds1 = reference.losses.mz, reference.losses.intensities
except:
print('Cannot Plot Losses')
return
abunds /= np.max(abunds)
abunds1 /= np.max(abunds1)
fig = Figure(figsize=(2, 1), dpi=300)
fig.subplots_adjust(top=0.95,bottom=0.3,left=0.18,right=0.95)
axes = fig.add_subplot(111)
axes.tick_params(width=0.8,labelsize=3)
axes.spines['bottom'].set_linewidth(0.5)
axes.spines['left'].set_linewidth(0.5)
axes.spines['right'].set_linewidth(0.5)
axes.spines['top'].set_linewidth(0.5)
axes.tick_params(width=0.8,labelsize=3)
axes.vlines(mz, ymin=0, ymax=abunds, color='r', lw = 0.5)
axes.vlines(mz1, ymin = 0, ymax = -abunds1, color='b', lw = 0.5)
axes.axhline(y=0,color='black', lw = 0.5)
axes.set_xlabel('m/z', fontsize = 3.5)
axes.set_ylabel('abundance', fontsize = 3.5)
return fig
def show_ref_spectrum(cur_spectrum,evt: gr.SelectData):
line_num = evt.index[0]
fig_loss = plot_2_spectrum(cur_spectrum,cur_spectrum.metadata['reference'][line_num],loss=True)
fig = plot_2_spectrum(cur_spectrum,cur_spectrum.metadata['reference'][line_num],loss=False)
return fig_loss,fig
def plot_2_mol(smi_anno,smi_ref,hightlight=True):
mol_anno = Chem.MolFromSmiles(smi_anno)
mol_ref = Chem.MolFromSmiles(smi_ref)
if hightlight:
mcs = rdFMCS.FindMCS([mol_anno, mol_ref], bondCompare=rdFMCS.BondCompare.CompareOrderExact,
matchValences = True, ringMatchesRingOnly = True)
mcs_str = mcs.smartsString
mcs_mol = Chem.MolFromSmarts(mcs_str)
allsubs_anno = tuple(chain.from_iterable(mol_anno.GetSubstructMatches(mcs_mol)))
allsubs_ref = tuple(chain.from_iterable(mol_ref.GetSubstructMatches(mcs_mol)))
else:
allsubs_anno = ()
allsubs_ref = ()
ref_img = Draw.MolToImage(mol_ref, highlightAtoms=allsubs_ref, wedgeBonds=False)
anno_img = Draw.MolToImage(mol_anno, highlightAtoms=allsubs_anno, wedgeBonds=False)
return anno_img,ref_img
def show_mol(structure_state,cur_spectrum,evt: gr.SelectData):
line_num = evt.index[0]
ref_smi = cur_spectrum.metadata['reference'][line_num].metadata['smiles']
anno_img,ref_img = plot_2_mol(structure_state,ref_smi)
return anno_img,ref_img
def show_info(cur_spectrum,evt: gr.SelectData):
line_num = evt.index[0]
d = cur_spectrum.metadata['reference'][line_num].metadata
df = pd.DataFrame.from_dict(d, orient='index', columns=['value'])
df.reset_index(inplace=True)
df.rename(columns={'index': 'key'}, inplace=True)
return df
def show_ref_spectrums(spectrum_state,structure_obj,evt: gr.SelectData):
line_num = evt.index[0]
smi_anno = structure_obj['CanonicalSMILES'][line_num]
current_reference = spectrum_state.metadata['reference']
annotation = spectrum_state.metadata['annotation']
i = np.where(annotation['CanonicalSMILES'].values == smi_anno)[0][0]
reference_table = []
for s in current_reference:
if 'smiles' in s.metadata.keys():
smiles = s.metadata['smiles']
else:
smiles = ''
if 'compound_name' in s.metadata.keys():
name = s.metadata['compound_name']
else:
name = smiles
if 'adduct' in s.metadata.keys():
adduct = s.metadata['adduct']
else:
adduct = ''
if 'parent_mass' in s.metadata.keys():
parent_mass = s.metadata['parent_mass']
else:
parent_mass = ''
if 'database' in s.metadata.keys():
ref_database = s.metadata['database']
else:
ref_database = ''
reference_table.append([name, adduct, smiles, parent_mass, ref_database])
reference_table = pd.DataFrame(reference_table, columns = ['name', 'adduct', 'smiles', 'parent_mass', 'database']) # 创建一个DataFrame对象,用于存储参考表格的数据
return reference_table,smi_anno
def show_formula(res_state,evt: gr.SelectData):
print(evt)
print(evt.__dict__)
print(f"You selected {evt.value} at {evt.index} from {evt.target}")
# 从click事件中获取行号
line_num = evt.index[0]
formula_list = np.unique(res_state['Identified Spectrum'][line_num].metadata['annotation']['MolecularFormula'])
cur_spectrum = res_state['Identified Spectrum'][line_num]
formula_df = pd.DataFrame({
'Formula':formula_list
})
return cur_spectrum,formula_df
def show_structure(spectrum_state,evt:gr.SelectData):
line_num = evt.index[0]
formula_list = spectrum_state.metadata['annotation']['MolecularFormula']
select_formula = formula_list[line_num]
annotation = spectrum_state.metadata['annotation']
structural_table = annotation.loc[annotation['MolecularFormula'] == select_formula,:]
structural_table = structural_table.reset_index(drop = True)
return select_formula,structural_table
def load_files(file_list):
spectrum_list = []
for fileName in file_list: # 遍历每一个文件名
spectrum_list += [s for s in load_from_mgf(fileName) if 'compound_name' in list(s.metadata.keys())]
titles = [s.metadata['compound_name'] for s in spectrum_list]
spectrums_df = pd.DataFrame({'title': titles, 'spectrum': spectrum_list})
# 用于返回nav的质谱名列表
name_list = spectrums_df[['title']]
return spectrums_df,name_list
def id_spectrum_list(spectrum_list,progress=None,is_deepmass=True):
res = []
if is_deepmass:
for s in progress.tqdm(spectrum_list):
if 'ionmode' in s.metadata.keys():
if s.metadata['ionmode'] == 'negative':
sn = identify_neg(s)
else:
sn = identify_pos(s)
else:
sn = identify_pos(s)
res.append(sn)
else:
for s in progress.tqdm(spectrum_list):
if 'ionmode' in s.metadata.keys():
if s.metadata['ionmode'] == 'negative':
sn = match_neg(s)
else:
sn = match_pos(s)
else:
sn = match_pos(s)
res.append(sn)
return res
def deepms_click_fn(state_df, progress=gr.Progress()):
"""点击run deepms的按钮触发事件
Args:
state_df (_type_): _description_
输入为一个dataframe,列名为title,spectrum
Returns:
_type_: _description_
更新下列状态
res_state,增加 identified spectrum字段,内为注释过的spectrum对象
spectrum_state,设置选中的spectrum
formula_state,,设置选中的formula
structure_state,,设置选中的structure
"""
# with open('test.pkl','br') as f:
# res = pickle.load(f)
res = id_spectrum_list(state_df['spectrum'],progress)
state_df['Identified Spectrum'] = res
annotation = res[0].metadata['annotation']
formula_list = np.unique(annotation['MolecularFormula'])
formula_df = pd.DataFrame({
'Formula':formula_list
})
spectrum_state = res[0]
formula_state = annotation['MolecularFormula'][0]
structural_table = annotation.loc[annotation['MolecularFormula'] == formula_state,:]
structure_state = structural_table['CanonicalSMILES'][0]
return state_df ,spectrum_state,formula_state,structure_state,formula_df
def click_matchms_fn(state_df, progress=gr.Progress()):
res = id_spectrum_list(state_df['spectrum'],progress,is_deepmass=False)
state_df['Identified Spectrum'] = res
annotation = res[0].metadata['annotation']
formula_list = np.unique(annotation['MolecularFormula'])
formula_df = pd.DataFrame({
'Formula':formula_list
})
spectrum_state = res[0]
formula_state = annotation['MolecularFormula'][0]
structural_table = annotation.loc[annotation['MolecularFormula'] == formula_state,:]
structure_state = structural_table['CanonicalSMILES'][0]
return state_df ,spectrum_state,formula_state,structure_state,formula_df
def save_identification_csv(res_state):
file_list = []
dir_path = './temp'
for s in res_state['Identified Spectrum']:
name = s.metadata['compound_name']
if 'annotation' in s.metadata.keys():
annotation = s.metadata['annotation']
else:
annotation = pd.DataFrame(columns=['Title', 'MolecularFormula', 'CanonicalSMILES', 'InChIKey'])
path = os.path.join(dir_path,f'{name}.csv')
csv = annotation.to_csv(path)
file_list.append(path)
md5_obj = hashlib.md5()
md5_obj.update(str(file_list).encode('utf-8'))
md5_name = md5_obj.hexdigest()
zip_path = os.path.join(dir_path,f'{md5_name}.zip')
with ZipFile(zip_path,'w') as zip_obj:
for f in file_list:
zip_obj.write(f, compress_type=zipfile.ZIP_DEFLATED)
file_list.insert(0,zip_path)
return gr.File(file_list,visible=True)
with gr.Blocks(title='DeepMS 2') as demo:
# 保存读取文件的结果
# res_state = gr.Dataframe(visible=False)
res_state = gr.State([])
# 保存当前选择的spectrum
spectrum_state = gr.State([])
# 保存当前选择的formula
formula_state = gr.State([])
# 保存当前选择的structure
structure_state = gr.State([])
with gr.Row(elem_classes=['first_row']):
file_obj = gr.File(file_count = 'multiple',type='filepath', height=100)
download = gr.File(visible=False,interactive=False)
with gr.Row(elem_classes=['first_row']):
run_save_btn = gr.Button('Save')
run_deepms_btn = gr.Button('Run DeepMS', )
run_matchms_btn = gr.Button('Run MatchMS')
#
with gr.Row(elem_classes=['secend_row']):
with gr.Column(scale=1):
nav_obj = gr.DataFrame(headers=["name"],elem_classes=['scroll'],interactive=False, label='Navigator')
with gr.Column(scale=1):
formula_obj = gr.DataFrame(headers=["Formula"],elem_classes=['scroll'],interactive=False, label='Formula Finder')
with gr.Row():
structure_obj = gr.DataFrame(headers=["Title","MolecularFormula","CanonicalSMILES","InChIKey","DeepMass Score"],interactive=False,elem_classes=['scroll'], label='Structure Finder')
with gr.Row():
ref_spectrums = gr.DataFrame(label='Reference Spectrums',headers=['name','adduct','smiles','parent_mass','database'],interactive=False,height=300,column_widths='20%')
with gr.Row():
with gr.Tab(label='Spectrum'):
with gr.Row():
spectrum_plot_fig = gr.Plot(label='Spectrum')
spectrum_loss_plot_fig = gr.Plot(label='Loss')
with gr.Tab(label='Structure'):
with gr.Row():
ann_structure_fig = gr.Image(label='Annotated Structure',height=200,width=200)
ref_structure_fig = gr.Image(label ='Reference Structure' ,height=200,width=200)
with gr.Tab(label='Information'):
information_obj = gr.DataFrame(interactive=False)
# 上传文件自动更新
file_obj.change(
load_files,
inputs=file_obj,
outputs=[
res_state,
nav_obj,
]
)
nav_obj.select(
fn=show_formula,
inputs=[res_state],
outputs=[spectrum_state,formula_obj]
)
formula_obj.select(
fn=show_structure,
inputs=[spectrum_state,],
outputs=[formula_state,structure_obj],
)
structure_obj.select(
fn=show_ref_spectrums,
inputs=[spectrum_state,structure_obj],
outputs=[ref_spectrums,structure_state]
)
run_deepms_btn.click(
fn=deepms_click_fn,
inputs=[res_state],
outputs=[
res_state,
spectrum_state,
formula_state,
structure_state,
formula_obj
]
)
run_matchms_btn.click(
fn=click_matchms_fn,
inputs=[res_state],
outputs=[
res_state,
spectrum_state,
formula_state,
structure_state,
formula_obj
]
)
ref_spectrums.select(
fn=show_ref_spectrum,
inputs=[spectrum_state],
outputs=[
spectrum_loss_plot_fig,
spectrum_plot_fig,
]
)
ref_spectrums.select(
fn=show_mol,
inputs=[structure_state,spectrum_state],
outputs=[
ann_structure_fig,
ref_structure_fig,
]
)
ref_spectrums.select(
fn=show_info,
inputs=[spectrum_state],
outputs=[
information_obj
]
)
run_save_btn.click(
fn=save_identification_csv,
inputs=[res_state],
outputs=[download]
)
if __name__ == '__main__':
print('Starting Webui!!!!')
demo.launch()
print('Started Webui!!!!')
|