File size: 7,947 Bytes
fb5f46a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# -*- coding: utf-8 -*-
"""
Created on Wed Sep  7 14:55:39 2022

@author: DELL
"""


import numpy as np
import pandas as pd
from tqdm import tqdm

from matchms.Spectrum import Spectrum
from matchms.similarity import CosineGreedy

from rdkit import Chem, DataStructs
from rdkit.Chem import AllChem
from rdkit.Chem import rdFMCS


def disable_rdkit_logging():
    """
    Disables RDKit whiny logging.
    """
    import rdkit.rdBase as rkrb
    import rdkit.RDLogger as rkl
    logger = rkl.logger()
    logger.setLevel(rkl.ERROR)
    rkrb.DisableLog('rdApp.error')

disable_rdkit_logging()
get_fp = lambda x: AllChem.GetMorganFingerprintAsBitVect(x, radius=2)
get_sim = lambda x, y: DataStructs.DiceSimilarity(x, y)


def get_tagged_atoms_from_mol(mol):
    '''Takes an RDKit molecule and returns list of tagged atoms and their
    corresponding numbers'''
    atoms = []
    atom_tags = []
    for atom in mol.GetAtoms():
        if atom.HasProp('molAtomMapNumber'):
            atoms.append(atom)
            atom_tags.append(int(atom.GetProp('molAtomMapNumber')))
    return atom_tags


def calc_frag_mass(frag):
    '''Takes an RDKit fragment and returns the exact mass of the fragment'''
    mass = 0
    for ad in frag.GetAtoms():
        mass += ad.GetMass()
    return mass
    

def calc_possible_spectrum_loss(smiles_1, smiles_2):
    """
    Calculate mass difference between related fragments of two compounds.
    Arguments:
        smiles_1, smiles_2: str, two different smiles of compounds.
    Returns:
        DataFrame, 
            transform, transformation from smiles_1 to smiles_2.
            loss, corresponding neutral loss of the transformations.
    Example:
        smiles_1 = 'COc1cc(O)c2c(c1)OC(c1ccc(O)cc1)CC2=O'
        smiles_2 = 'CC1OC(OCC2OC(Oc3cc(O)c4c(c3)OC(c3ccc(O)cc3)CC4=O)C(O)C(O)C2O)C(O)C(O)C1O'
        calc_possible_spectrum_loss(smiles_1, smiles_2)
    """    
    
    try:
        x = Chem.MolToSmiles(Chem.MolFromSmiles(smiles_1))
        y = Chem.MolToSmiles(Chem.MolFromSmiles(smiles_2))
    except:
        return None
    
    mol1 = Chem.AddHs(Chem.MolFromSmiles(x))
    mol2 = Chem.AddHs(Chem.MolFromSmiles(y))
    
    if get_sim(get_fp(mol1), get_fp(mol2)) < 0.3:
        return None
    
    mcs = rdFMCS.FindMCS([mol1, mol2], bondCompare=rdFMCS.BondCompare.CompareOrderExact,
                         matchValences = True, ringMatchesRingOnly = True)
    if mcs.numAtoms <= 5:
        return None
    
    mcs_str = mcs.smartsString
    
    rdu1 = AllChem.DeleteSubstructs(mol1, Chem.MolFromSmarts(mcs_str))
    rdu2 = AllChem.DeleteSubstructs(mol2, Chem.MolFromSmarts(mcs_str))
    
    try:
        rdu1 = Chem.GetMolFrags(rdu1, asMols=True)
    except:
        rdu1 = np.array([rdu1])
        
    try:
        rdu2 = Chem.GetMolFrags(rdu2, asMols=True)
    except:
        rdu2 = np.array([rdu2])
    
    if (len(rdu1) == 0) and (len(rdu2) == 0):
        return None

    mass_1 = np.array([calc_frag_mass(m) for m in rdu1])
    mass_2 = np.array([calc_frag_mass(m) for m in rdu2])
    if len(mass_1) == 0:
        mass_1 = np.array([0])
    if len(mass_2) == 0:
        mass_2 = np.array([0])
    
    mass_diffs, mol_transform = [], []
    for i in range(len(mass_1)):
        for j in range(len(mass_2)):
            try:
                a = Chem.MolToSmiles(Chem.RemoveHs(rdu1[i]))
            except:
                a = 'None'
            try:
                b = Chem.MolToSmiles(Chem.RemoveHs(rdu2[j]))
            except:
                b = 'None'
            mol_transform.append('{}>>{}'.format(a,b))
            mass_diffs.append(mass_2[j] - mass_1[i])
    
    return pd.DataFrame({'transform': mol_transform, 'loss': mass_diffs})
    
    
def calc_aligned_similarity(smiles_1, smiles_2, spectrum_1, spectrum_2, mz_tol=0.05, similarity_function=CosineGreedy()):
    """
    Calculate dtw similarity between two spectrums.
    Arguments:
        smiles_1, smiles_2: str, two different smiles of compounds.
        spectrum_1, spectrum_2: Two different spectrum of matchms.
    Returns:
        similarity: float, similarity between aligned spectrums.
        matching_data: DataFrame, fragment matching information.
    Example:
        smiles_1 = 'CCCC=C1C2=CC=CC=C2C(=O)O1'
        smiles_2 = 'CCCC=C1C2=C(C=CCC2)C(=O)O1'
        spectrum_1 = Spectrum(mz = np.array([91.1, 115.1, 117.1, 128.1, 129.1, 143.1, 145.1, 152.1, 153.1, 171.1, 189.1]), 
                              intensities = np.array([0.12314933, 0.10446688, 0.16478671, 0.56083889, 0.11087135,
                                                      0.43528005, 0.1149675 , 0.10339803, 0.51058281, 0.999999, 0.88490263]),
                              metadata={"precursor_mz": 189.0909})
        spectrum_2 = Spectrum(mz = np.array([ 79.1, 93.1, 105.1, 117.1, 145.1, 173.1, 191.1]), 
                              intensities = np.array([0.10704697, 0.10657389, 0.1382483 , 0.12679477, 0.16397634,
                                                      0.26150501, 0.999999]),
                              metadata={"precursor_mz": 191.1064})
        calc_aligned_similarity(smiles_1, smiles_2, spectrum_1, spectrum_2)
    """
    
    loss = calc_possible_spectrum_loss(smiles_1, smiles_2)
    
    if loss is None:
        loss_1 = loss_2 = 0
        loss = pd.DataFrame({'transform': [], 'loss': []})
    else:
        loss_1 = -sum([l for l in list(loss['loss']) if l < 0])
        loss_2 = sum([l for l in list(loss['loss']) if l > 0])
    
    mcs1 = 9999
    mcs2 = 9999
    try:
        mcs1 = spectrum_1.metadata['precursor_mz'] - loss_1
    except:
        pass
    try:
        mcs2 = spectrum_2.metadata['precursor_mz'] - loss_2
    except:
        pass
    maxCS = min(mcs1, mcs2)
    
    if (len(spectrum_1.mz) == 0) or (len(spectrum_2.mz) == 0):
        return 0, None
    
    x_mz, x_intensities = spectrum_1.mz, spectrum_1.intensities
    y_mz, y_intensities = spectrum_2.mz, spectrum_2.intensities
    
    y_mz_new, y_intensities_new = [], []
    matching_data = []
    for i, y_mz_ in enumerate(y_mz):
        if y_intensities[i] < 0.01:
            continue
        if np.min(np.abs(y_mz_ - x_mz)) <= mz_tol:
            if y_mz_ > maxCS + 2.006:
                continue
            a = y_mz_
            b = x_mz[np.argmin(np.abs(y_mz_ - x_mz))]
            c = abs(a - b)
            d = y_intensities[i]
            y_mz_new.append(y_mz_)
            y_intensities_new.append(y_intensities[i])
            matching_data.append([a, b, c, d])
        else:
            matched = False
            for loss_ in loss['loss']:
                '''
                if y_mz_ - loss_ > maxCS - loss_ + 2.006:
                    continue
                '''
                if np.min(np.abs(y_mz_ - loss_ - x_mz)) <= mz_tol:
                    matched = True
                    a = y_mz_
                    b = x_mz[np.argmin(np.abs(y_mz_ - loss_ - x_mz))]
                    c = abs(a - b)
                    d = y_intensities[i]
                    y_mz_new.append(y_mz_ - loss_)
                    y_intensities_new.append(y_intensities[i])
                    matching_data.append([a, b, c, d])
                    break
            if not matched:
                y_mz_new.append(y_mz_)
                y_intensities_new.append(y_intensities[i])
    y_mz_new = np.array(y_mz_new)
    y_intensities_new = np.array(y_intensities_new)
    
    index = np.argsort(y_mz_new)
    y_mz_new = y_mz_new[index]
    y_intensities_new = y_intensities_new[index]
    
    spectrum_2_aligned = Spectrum(mz = y_mz_new, 
                                  intensities = y_intensities_new,
                                  metadata = spectrum_2.metadata)
    
    similarity = float(similarity_function.pair(spectrum_1, spectrum_2_aligned)['score'])
    matching_data = pd.DataFrame(matching_data, columns = ['reference', 'query', 'loss', 'intensity'])
    return similarity, matching_data