File size: 5,541 Bytes
f96995c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import numpy as np
import open3d as o3d


def filter_tabletop_points(pcd):
    # RANSAC to find table plane
    plane_model, inliers = pcd.segment_plane(distance_threshold=0.01, ransac_n=3, num_iterations=1000)
    [a, b, c, d] = plane_model
    table_plane = np.array([a, b, c, d])

    # remove points on the table
    pcd = pcd.select_by_index(inliers, invert=True)

    outliers = None
    new_outlier = None
    rm_iter = 0
    while new_outlier is None or len(new_outlier.points) > 0:
        _, inlier_idx = pcd.remove_statistical_outlier(
            nb_neighbors = 20, std_ratio = 1.5 + rm_iter * 0.5
        )
        new_pcd = pcd.select_by_index(inlier_idx)
        new_outlier = pcd.select_by_index(inlier_idx, invert=True)
        if outliers is None:
            outliers = new_outlier
        else:
            outliers += new_outlier
        pcd = new_pcd
        rm_iter += 1

    return pcd


def get_tabletop_points(rgb_list, depth_list, R_list, t_list, intr_list, bbox, depth_threshold=[0, 2]):
    # increase if out of memory
    stride = 1

    pcd_all = o3d.geometry.PointCloud()

    for i in range(len(rgb_list)):
        intr = intr_list[i]
        R_cam2board = R_list[i]
        t_cam2board = t_list[i]

        depth = depth_list[i].copy().astype(np.float32)

        points = depth2fgpcd(depth, intr)
        points = points.reshape(depth.shape[0], depth.shape[1], 3)
        points = points[::stride, ::stride, :].reshape(-1, 3)

        mask = np.logical_and(
            (depth > depth_threshold[0]), (depth < depth_threshold[1])
        )  # (H, W)
        mask = mask[::stride, ::stride].reshape(-1)

        img = rgb_list[i].copy()

        points = points[mask].reshape(-1, 3)

        points = R_cam2board @ points.T + t_cam2board[:, None]
        points = points.T  # (N, 3)

        pcd = o3d.geometry.PointCloud()
        pcd.points = o3d.utility.Vector3dVector(points)

        colors = img[::stride, ::stride, :].reshape(-1, 3).astype(np.float64)
        colors = colors[mask].reshape(-1, 3)
        colors = colors[:, ::-1].copy()
        pcd.colors = o3d.utility.Vector3dVector(colors / 255)
        pcd_all += pcd

    pcd = pcd_all
    pcd = pcd.crop(o3d.geometry.AxisAlignedBoundingBox(min_bound=bbox[:, 0], max_bound=bbox[:, 1]))
    pcd = pcd.voxel_down_sample(voxel_size=0.001)

    # NOTE: simple filtering instead of instance-specific segmentation processing
    pcd = filter_tabletop_points(pcd)
    return pcd


def rpy_to_rotation_matrix(roll, pitch, yaw):
    # Assume the input in in degree
    roll = roll / 180 * np.pi
    pitch = pitch / 180 * np.pi
    yaw = yaw / 180 * np.pi
    # Define the rotation matrices
    Rx = np.array([[1, 0, 0], [0, np.cos(roll), -np.sin(roll)], [0, np.sin(roll), np.cos(roll)]])
    Ry = np.array([[np.cos(pitch), 0, np.sin(pitch)], [0, 1, 0], [-np.sin(pitch), 0, np.cos(pitch)]])
    Rz = np.array([[np.cos(yaw), -np.sin(yaw), 0], [np.sin(yaw), np.cos(yaw), 0], [0, 0, 1]])
    # Combine the rotations
    R = Rz @ Ry @ Rx
    return R


def rotation_matrix_to_rpy(rotation_matrix):
    # Get the roll, pitch, yaw in radian
    roll = np.arctan2(rotation_matrix[2, 1], rotation_matrix[2, 2])
    pitch = np.arctan2(-rotation_matrix[2, 0], np.sqrt(rotation_matrix[2, 1] ** 2 + rotation_matrix[2, 2] ** 2))
    yaw = np.arctan2(rotation_matrix[1, 0], rotation_matrix[0, 0])
    # Get the roll, pitch, yaw in degree
    roll = roll / np.pi * 180
    pitch = pitch / np.pi * 180
    yaw = yaw / np.pi * 180
    return roll, pitch, yaw


def depth2fgpcd(depth, intrinsic_matrix):
    H, W = depth.shape
    x, y = np.meshgrid(np.arange(W), np.arange(H))
    x = x.reshape(-1)
    y = y.reshape(-1)
    depth = depth.reshape(-1)
    points = np.stack([x, y, np.ones_like(x)], axis=1)
    points = points * depth[:, None]
    points = points @ np.linalg.inv(intrinsic_matrix).T
    return points


def similarity_transform(from_points, to_points):
    
    assert len(from_points.shape) == 2, \
        "from_points must be a m x n array"
    assert from_points.shape == to_points.shape, \
        "from_points and to_points must have the same shape"
    
    N, m = from_points.shape
    
    mean_from = from_points.mean(axis = 0)
    mean_to = to_points.mean(axis = 0)
    
    delta_from = from_points - mean_from # N x m
    delta_to = to_points - mean_to       # N x m
    
    sigma_from = (delta_from * delta_from).sum(axis = 1).mean()
    sigma_to = (delta_to * delta_to).sum(axis = 1).mean()
    
    cov_matrix = delta_to.T.dot(delta_from) / N
    
    U, d, V_t = np.linalg.svd(cov_matrix, full_matrices = True)
    cov_rank = np.linalg.matrix_rank(cov_matrix)
    S = np.eye(m)
    
    if cov_rank >= m - 1: #  and np.linalg.det(cov_matrix) < 0:  # TODO touch calibration
        S[m-1, m-1] = -1
    elif cov_rank < m-1:
        raise ValueError("colinearility detected in covariance matrix:\n{}".format(cov_matrix))
    
    R = U.dot(S).dot(V_t)
    c = (d * S.diagonal()).sum() / sigma_from
    t = mean_to - c*R.dot(mean_from)
    
    return c, R, t


def visualize_o3d(geometries):
    frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=0.2, origin=[0, 0, 0])
    geometries.append(frame)

    pcd = o3d.geometry.PointCloud()
    pcd.points = o3d.utility.Vector3dVector()
    viewer = o3d.visualization.Visualizer()
    viewer.create_window()
    for geometry in geometries:
        viewer.add_geometry(geometry)
    opt = viewer.get_render_option()
    opt.background_color = np.asarray([1., 1., 1.])
    viewer.run()