Spaces:
Runtime error
Runtime error
File size: 41,622 Bytes
2a37fe9 c16ff2b 2a37fe9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 |
import inspect
import json
import math
import time
from pathlib import Path
from typing import Callable, List, Optional, Tuple, Union
import numpy as np
import torch
from diffusers.configuration_utils import FrozenDict
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import (
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
)
from diffusers.utils import deprecate, logging
from packaging import version
from torch import nn
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from .upsampling import RealESRGANModel
from .utils import get_timesteps_arr, make_video_pyav, slerp
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
class StableDiffusionWalkPipeline(DiffusionPipeline):
r"""
Pipeline for generating videos by interpolating Stable Diffusion's latent space.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
Args:
vae ([`AutoencoderKL`]):
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
text_encoder ([`CLIPTextModel`]):
Frozen text-encoder. Stable Diffusion uses the text portion of
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
tokenizer (`CLIPTokenizer`):
Tokenizer of class
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
feature_extractor ([`CLIPFeatureExtractor`]):
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
"""
_optional_components = ["safety_checker", "feature_extractor"]
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
],
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPFeatureExtractor,
requires_safety_checker: bool = True,
):
super().__init__()
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
" file"
)
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["steps_offset"] = 1
scheduler._internal_dict = FrozenDict(new_config)
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
deprecation_message = (
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
)
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(scheduler.config)
new_config["clip_sample"] = False
scheduler._internal_dict = FrozenDict(new_config)
if safety_checker is None and requires_safety_checker:
logger.warning(
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
)
if safety_checker is not None and feature_extractor is None:
raise ValueError(
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
)
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
version.parse(unet.config._diffusers_version).base_version
) < version.parse("0.9.0.dev0")
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
deprecation_message = (
"The configuration file of the unet has set the default `sample_size` to smaller than"
" 64 which seems highly unlikely .If you're checkpoint is a fine-tuned version of any of the"
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
" in the config might lead to incorrect results in future versions. If you have downloaded this"
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
" the `unet/config.json` file"
)
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
new_config = dict(unet.config)
new_config["sample_size"] = 64
unet._internal_dict = FrozenDict(new_config)
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.register_to_config(requires_safety_checker=requires_safety_checker)
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
r"""
Enable sliced attention computation.
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
in several steps. This is useful to save some memory in exchange for a small speed decrease.
Args:
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
`attention_head_dim` must be a multiple of `slice_size`.
"""
if slice_size == "auto":
if isinstance(self.unet.config.attention_head_dim, int):
# half the attention head size is usually a good trade-off between
# speed and memory
slice_size = self.unet.config.attention_head_dim // 2
else:
# if `attention_head_dim` is a list, take the smallest head size
slice_size = min(self.unet.config.attention_head_dim)
self.unet.set_attention_slice(slice_size)
def disable_attention_slicing(self):
r"""
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
back to computing attention in one step.
"""
# set slice_size = `None` to disable `attention slicing`
self.enable_attention_slicing(None)
@torch.no_grad()
def __call__(
self,
prompt: Optional[Union[str, List[str]]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.0,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
callback_steps: Optional[int] = 1,
text_embeddings: Optional[torch.FloatTensor] = None,
**kwargs,
):
r"""
Function invoked when calling the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*, defaults to `None`):
The prompt or prompts to guide the image generation. If not provided, `text_embeddings` is required.
height (`int`, *optional*, defaults to 512):
The height in pixels of the generated image.
width (`int`, *optional*, defaults to 512):
The width in pixels of the generated image.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
if `guidance_scale` is less than `1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (Ξ·) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will ge generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that will be called every `callback_steps` steps during inference. The function will be
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function will be called. If not specified, the callback will be
called at every step.
text_embeddings (`torch.FloatTensor`, *optional*, defaults to `None`):
Pre-generated text embeddings to be used as inputs for image generation. Can be used in place of
`prompt` to avoid re-computing the embeddings. If not provided, the embeddings will be generated from
the supplied `prompt`.
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
When returning a tuple, the first element is a list with the generated images, and the second element is a
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
(nsfw) content, according to the `safety_checker`.
"""
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
if height % 8 != 0 or width % 8 != 0:
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
if (callback_steps is None) or (
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
if text_embeddings is None:
if isinstance(prompt, str):
batch_size = 1
elif isinstance(prompt, list):
batch_size = len(prompt)
else:
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
# get prompt text embeddings
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
print(
"The following part of your input was truncated because CLIP can only handle sequences up to"
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
)
text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]
else:
batch_size = text_embeddings.shape[0]
# duplicate text embeddings for each generation per prompt, using mps friendly method
bs_embed, seq_len, _ = text_embeddings.shape
text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
uncond_tokens: List[str]
if negative_prompt is None:
uncond_tokens = [""]
elif text_embeddings is None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif isinstance(negative_prompt, str):
uncond_tokens = [negative_prompt]
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
else:
uncond_tokens = negative_prompt
max_length = self.tokenizer.model_max_length
uncond_input = self.tokenizer(
uncond_tokens,
padding="max_length",
max_length=max_length,
truncation=True,
return_tensors="pt",
)
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
seq_len = uncond_embeddings.shape[1]
uncond_embeddings = uncond_embeddings.repeat(batch_size, num_images_per_prompt, 1)
uncond_embeddings = uncond_embeddings.view(batch_size * num_images_per_prompt, seq_len, -1)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# get the initial random noise unless the user supplied it
# Unlike in other pipelines, latents need to be generated in the target device
# for 1-to-1 results reproducibility with the CompVis implementation.
# However this currently doesn't work in `mps`.
latents_shape = (
batch_size * num_images_per_prompt,
self.unet.in_channels,
height // 8,
width // 8,
)
latents_dtype = text_embeddings.dtype
if latents is None:
if self.device.type == "mps":
# randn does not exist on mps
latents = torch.randn(
latents_shape,
generator=generator,
device="cpu",
dtype=latents_dtype,
).to(self.device)
else:
latents = torch.randn(
latents_shape,
generator=generator,
device=self.device,
dtype=latents_dtype,
)
else:
if latents.shape != latents_shape:
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
latents = latents.to(self.device)
# set timesteps
self.scheduler.set_timesteps(num_inference_steps)
# Some schedulers like PNDM have timesteps as arrays
# It's more optimized to move all timesteps to correct device beforehand
timesteps_tensor = self.scheduler.timesteps.to(self.device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (Ξ·) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to Ξ· in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
# call the callback, if provided
if callback is not None and i % callback_steps == 0:
callback(i, t, latents)
latents = 1 / 0.18215 * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
if self.safety_checker is not None:
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(self.device)
image, has_nsfw_concept = self.safety_checker(
images=image,
clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype),
)
else:
has_nsfw_concept = None
if output_type == "pil":
image = self.numpy_to_pil(image)
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
def generate_inputs(self, prompt_a, prompt_b, seed_a, seed_b, noise_shape, T, batch_size):
embeds_a = self.embed_text(prompt_a)
embeds_b = self.embed_text(prompt_b)
latents_dtype = embeds_a.dtype
latents_a = self.init_noise(seed_a, noise_shape, latents_dtype)
latents_b = self.init_noise(seed_b, noise_shape, latents_dtype)
batch_idx = 0
embeds_batch, noise_batch = None, None
for i, t in enumerate(T):
embeds = torch.lerp(embeds_a, embeds_b, t)
noise = slerp(float(t), latents_a, latents_b)
embeds_batch = embeds if embeds_batch is None else torch.cat([embeds_batch, embeds])
noise_batch = noise if noise_batch is None else torch.cat([noise_batch, noise])
batch_is_ready = embeds_batch.shape[0] == batch_size or i + 1 == T.shape[0]
if not batch_is_ready:
continue
yield batch_idx, embeds_batch, noise_batch
batch_idx += 1
del embeds_batch, noise_batch
torch.cuda.empty_cache()
embeds_batch, noise_batch = None, None
def make_clip_frames(
self,
prompt_a: str,
prompt_b: str,
seed_a: int,
seed_b: int,
num_interpolation_steps: int = 5,
save_path: Union[str, Path] = "outputs/",
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
eta: float = 0.0,
height: Optional[int] = None,
width: Optional[int] = None,
upsample: bool = False,
batch_size: int = 1,
image_file_ext: str = ".png",
T: np.ndarray = None,
skip: int = 0,
negative_prompt: str = None,
step: Optional[Tuple[int, int]] = None,
):
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
save_path = Path(save_path)
save_path.mkdir(parents=True, exist_ok=True)
T = T if T is not None else np.linspace(0.0, 1.0, num_interpolation_steps)
if T.shape[0] != num_interpolation_steps:
raise ValueError(f"Unexpected T shape, got {T.shape}, expected dim 0 to be {num_interpolation_steps}")
if upsample:
if getattr(self, "upsampler", None) is None:
self.upsampler = RealESRGANModel.from_pretrained("nateraw/real-esrgan")
self.upsampler.to(self.device)
batch_generator = self.generate_inputs(
prompt_a,
prompt_b,
seed_a,
seed_b,
(1, self.unet.in_channels, height // 8, width // 8),
T[skip:],
batch_size,
)
num_batches = math.ceil(num_interpolation_steps / batch_size)
log_prefix = "" if step is None else f"[{step[0]}/{step[1]}] "
frame_index = skip
for batch_idx, embeds_batch, noise_batch in batch_generator:
if batch_size == 1:
msg = f"Generating frame {frame_index}"
else:
msg = f"Generating frames {frame_index}-{frame_index+embeds_batch.shape[0]-1}"
logger.info(f"{log_prefix}[{batch_idx}/{num_batches}] {msg}")
outputs = self(
latents=noise_batch,
text_embeddings=embeds_batch,
height=height,
width=width,
guidance_scale=guidance_scale,
eta=eta,
num_inference_steps=num_inference_steps,
output_type="pil" if not upsample else "numpy",
negative_prompt=negative_prompt,
)["images"]
for image in outputs:
frame_filepath = save_path / (f"frame%06d{image_file_ext}" % frame_index)
image = image if not upsample else self.upsampler(image)
image.save(frame_filepath)
frame_index += 1
def walk(
self,
prompts: Optional[List[str]] = None,
seeds: Optional[List[int]] = None,
num_interpolation_steps: Optional[Union[int, List[int]]] = 5, # int or list of int
output_dir: Optional[str] = "./dreams",
name: Optional[str] = None,
image_file_ext: Optional[str] = ".png",
fps: Optional[int] = 30,
num_inference_steps: Optional[int] = 50,
guidance_scale: Optional[float] = 7.5,
eta: Optional[float] = 0.0,
height: Optional[int] = None,
width: Optional[int] = None,
upsample: Optional[bool] = False,
batch_size: Optional[int] = 1,
resume: Optional[bool] = False,
audio_filepath: str = None,
audio_start_sec: Optional[Union[int, float]] = None,
margin: Optional[float] = 1.0,
smooth: Optional[float] = 0.0,
negative_prompt: Optional[str] = None,
make_video: Optional[bool] = True,
):
"""Generate a video from a sequence of prompts and seeds. Optionally, add audio to the
video to interpolate to the intensity of the audio.
Args:
prompts (Optional[List[str]], optional):
list of text prompts. Defaults to None.
seeds (Optional[List[int]], optional):
list of random seeds corresponding to prompts. Defaults to None.
num_interpolation_steps (Union[int, List[int]], *optional*):
How many interpolation steps between each prompt. Defaults to None.
output_dir (Optional[str], optional):
Where to save the video. Defaults to './dreams'.
name (Optional[str], optional):
Name of the subdirectory of output_dir. Defaults to None.
image_file_ext (Optional[str], *optional*, defaults to '.png'):
The extension to use when writing video frames.
fps (Optional[int], *optional*, defaults to 30):
The frames per second in the resulting output videos.
num_inference_steps (Optional[int], *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (Optional[float], *optional*, defaults to 7.5):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
eta (Optional[float], *optional*, defaults to 0.0):
Corresponds to parameter eta (Ξ·) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
[`schedulers.DDIMScheduler`], will be ignored for others.
height (Optional[int], *optional*, defaults to None):
height of the images to generate.
width (Optional[int], *optional*, defaults to None):
width of the images to generate.
upsample (Optional[bool], *optional*, defaults to False):
When True, upsamples images with realesrgan.
batch_size (Optional[int], *optional*, defaults to 1):
Number of images to generate at once.
resume (Optional[bool], *optional*, defaults to False):
When True, resumes from the last frame in the output directory based
on available prompt config. Requires you to provide the `name` argument.
audio_filepath (str, *optional*, defaults to None):
Optional path to an audio file to influence the interpolation rate.
audio_start_sec (Optional[Union[int, float]], *optional*, defaults to 0):
Global start time of the provided audio_filepath.
margin (Optional[float], *optional*, defaults to 1.0):
Margin from librosa hpss to use for audio interpolation.
smooth (Optional[float], *optional*, defaults to 0.0):
Smoothness of the audio interpolation. 1.0 means linear interpolation.
negative_prompt (Optional[str], *optional*, defaults to None):
Optional negative prompt to use. Same across all prompts.
make_video (Optional[bool], *optional*, defaults to True):
When True, makes a video from the generated frames. If False, only
generates the frames.
This function will create sub directories for each prompt and seed pair.
For example, if you provide the following prompts and seeds:
```
prompts = ['a dog', 'a cat', 'a bird']
seeds = [1, 2, 3]
num_interpolation_steps = 5
output_dir = 'output_dir'
name = 'name'
fps = 5
```
Then the following directories will be created:
```
output_dir
βββ name
β βββ name_000000
β β βββ frame000000.png
β β βββ ...
β β βββ frame000004.png
β β βββ name_000000.mp4
β βββ name_000001
β β βββ frame000000.png
β β βββ ...
β β βββ frame000004.png
β β βββ name_000001.mp4
β βββ ...
β βββ name.mp4
| |ββ prompt_config.json
```
Returns:
str: The resulting video filepath. This video includes all sub directories' video clips.
"""
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
output_path = Path(output_dir)
name = name or time.strftime("%Y%m%d-%H%M%S")
save_path_root = output_path / name
save_path_root.mkdir(parents=True, exist_ok=True)
# Where the final video of all the clips combined will be saved
output_filepath = save_path_root / f"{name}.mp4"
# If using same number of interpolation steps between, we turn into list
if not resume and isinstance(num_interpolation_steps, int):
num_interpolation_steps = [num_interpolation_steps] * (len(prompts) - 1)
if not resume:
audio_start_sec = audio_start_sec or 0
# Save/reload prompt config
prompt_config_path = save_path_root / "prompt_config.json"
if not resume:
prompt_config_path.write_text(
json.dumps(
dict(
prompts=prompts,
seeds=seeds,
num_interpolation_steps=num_interpolation_steps,
fps=fps,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
eta=eta,
upsample=upsample,
height=height,
width=width,
audio_filepath=audio_filepath,
audio_start_sec=audio_start_sec,
negative_prompt=negative_prompt,
),
indent=2,
sort_keys=False,
)
)
else:
data = json.load(open(prompt_config_path))
prompts = data["prompts"]
seeds = data["seeds"]
num_interpolation_steps = data["num_interpolation_steps"]
fps = data["fps"]
num_inference_steps = data["num_inference_steps"]
guidance_scale = data["guidance_scale"]
eta = data["eta"]
upsample = data["upsample"]
height = data["height"]
width = data["width"]
audio_filepath = data["audio_filepath"]
audio_start_sec = data["audio_start_sec"]
negative_prompt = data.get("negative_prompt", None)
for i, (prompt_a, prompt_b, seed_a, seed_b, num_step) in enumerate(
zip(prompts, prompts[1:], seeds, seeds[1:], num_interpolation_steps)
):
# {name}_000000 / {name}_000001 / ...
save_path = save_path_root / f"{name}_{i:06d}"
# Where the individual clips will be saved
step_output_filepath = save_path / f"{name}_{i:06d}.mp4"
# Determine if we need to resume from a previous run
skip = 0
if resume:
if step_output_filepath.exists():
print(f"Skipping {save_path} because frames already exist")
continue
existing_frames = sorted(save_path.glob(f"*{image_file_ext}"))
if existing_frames:
skip = int(existing_frames[-1].stem[-6:]) + 1
if skip + 1 >= num_step:
print(f"Skipping {save_path} because frames already exist")
continue
print(f"Resuming {save_path.name} from frame {skip}")
audio_offset = audio_start_sec + sum(num_interpolation_steps[:i]) / fps
audio_duration = num_step / fps
self.make_clip_frames(
prompt_a,
prompt_b,
seed_a,
seed_b,
num_interpolation_steps=num_step,
save_path=save_path,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
eta=eta,
height=height,
width=width,
upsample=upsample,
batch_size=batch_size,
T=get_timesteps_arr(
audio_filepath,
offset=audio_offset,
duration=audio_duration,
fps=fps,
margin=margin,
smooth=smooth,
)
if audio_filepath
else None,
skip=skip,
negative_prompt=negative_prompt,
step=(i, len(prompts) - 1),
)
if make_video:
make_video_pyav(
save_path,
audio_filepath=audio_filepath,
fps=fps,
output_filepath=step_output_filepath,
glob_pattern=f"*{image_file_ext}",
audio_offset=audio_offset,
audio_duration=audio_duration,
sr=44100,
)
if make_video:
return make_video_pyav(
save_path_root,
audio_filepath=audio_filepath,
fps=fps,
audio_offset=audio_start_sec,
audio_duration=sum(num_interpolation_steps) / fps,
output_filepath=output_filepath,
glob_pattern=f"**/*{image_file_ext}",
sr=44100,
)
def embed_text(self, text, negative_prompt=None):
"""Helper to embed some text"""
text_input = self.tokenizer(
text,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
with torch.no_grad():
embed = self.text_encoder(text_input.input_ids.to(self.device))[0]
return embed
def init_noise(self, seed, noise_shape, dtype):
"""Helper to initialize noise"""
# randn does not exist on mps, so we create noise on CPU here and move it to the device after initialization
if self.device.type == "mps":
noise = torch.randn(
noise_shape,
device="cpu",
generator=torch.Generator(device="cpu").manual_seed(seed),
).to(self.device)
else:
noise = torch.randn(
noise_shape,
device=self.device,
generator=torch.Generator(device=self.device).manual_seed(seed),
dtype=dtype,
)
return noise
@classmethod
def from_pretrained(cls, *args, tiled=False, **kwargs):
"""Same as diffusers `from_pretrained` but with tiled option, which makes images tilable"""
if tiled:
def patch_conv(**patch):
cls = nn.Conv2d
init = cls.__init__
def __init__(self, *args, **kwargs):
return init(self, *args, **kwargs, **patch)
cls.__init__ = __init__
patch_conv(padding_mode="circular")
pipeline = super().from_pretrained(*args, **kwargs)
pipeline.tiled = tiled
return pipeline
|