Spaces:
Sleeping
Sleeping
File size: 2,087 Bytes
5425743 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
from tuneavideo.models.unet import UNet3DConditionModel
from tuneavideo.util import save_videos_grid
import torch
import gradio as gr
def tune_video_predict(
prompt: str,
video_length: int,
height: int,
width: int,
num_inference_steps: int,
guidance_scale: float,
):
unet = UNet3DConditionModel.from_pretrained('Tune-A-Video-library/a-man-is-surfing', subfolder='unet', torch_dtype=torch.float16).to('cuda')
pipe = TuneAVideoPipeline.from_pretrained('CompVis/stable-diffusion-v1-4', unet=unet, torch_dtype=torch.float16).to("cuda")
video = pipe(prompt, video_length=video_length, height=height, width=width, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale).videos
output_path = save_videos_grid(video, save_path='output', path=f"{prompt}.gif")
return output_path
demo_inputs = [
gr.inputs.Textbox(
label="Prompt",
default='a panda is surfing'
),
gr.inputs.Slider(
label="Video Length",
minimum=1,
maximum=50,
default=4,
step=1,
),
gr.inputs.Slider(
label="Height",
minimum=128,
maximum=1280,
default=128,
step=32,
),
gr.inputs.Slider(
label="Width",
minimum=128,
maximum=1280,
default=128,
step=32,
),
gr.inputs.Slider(
label="Num Inference Steps",
minimum=1,
maximum=100,
default=10,
step=1,
),
gr.inputs.Slider(
label="Guidance Scale",
minimum=0.0,
maximum=50,
default=7.5,
step=0.5,
)
]
demo_outputs = gr.outputs.Video(type="gif", label="Output")
examples = [
["a panda is surfing", 4, 128, 128, 10, 7.5]
]
demo_app = gr.Interface(
fn=tune_video_predict,
inputs=demo_inputs,
outputs=demo_outputs,
examples=examples,
cache_examples=True,
title="Tune-A-Video",
theme="huggingface",
)
demo_app.launch(debug=True, enable_queue=True)
|