Spaces:
Runtime error
Runtime error
File size: 75,216 Bytes
e7d5680 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 |
# MIT License
#
# Copyright (c) 2022 Cheng Lu
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
#
# This file is adapted from the dpm-solver project
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# PixArt: https://github.com/PixArt-alpha/PixArt-alpha
# dpm-solver: https://github.com/LuChengTHU/dpm-solver
# --------------------------------------------------------
import math
import numpy as np
import torch
from tqdm import tqdm
def _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, warmup_frac):
betas = beta_end * np.ones(num_diffusion_timesteps, dtype=np.float64)
warmup_time = int(num_diffusion_timesteps * warmup_frac)
betas[:warmup_time] = np.linspace(beta_start, beta_end, warmup_time, dtype=np.float64)
return betas
def get_beta_schedule(beta_schedule, *, beta_start, beta_end, num_diffusion_timesteps):
"""
This is the deprecated API for creating beta schedules.
See get_named_beta_schedule() for the new library of schedules.
"""
if beta_schedule == "quad":
betas = (
np.linspace(
beta_start**0.5,
beta_end**0.5,
num_diffusion_timesteps,
dtype=np.float64,
)
** 2
)
elif beta_schedule == "linear":
betas = np.linspace(beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64)
elif beta_schedule == "warmup10":
betas = _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, 0.1)
elif beta_schedule == "warmup50":
betas = _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, 0.5)
elif beta_schedule == "const":
betas = beta_end * np.ones(num_diffusion_timesteps, dtype=np.float64)
elif beta_schedule == "jsd": # 1/T, 1/(T-1), 1/(T-2), ..., 1
betas = 1.0 / np.linspace(num_diffusion_timesteps, 1, num_diffusion_timesteps, dtype=np.float64)
else:
raise NotImplementedError(beta_schedule)
assert betas.shape == (num_diffusion_timesteps,)
return betas
def get_named_beta_schedule(schedule_name, num_diffusion_timesteps):
"""
Get a pre-defined beta schedule for the given name.
The beta schedule library consists of beta schedules which remain similar
in the limit of num_diffusion_timesteps.
Beta schedules may be added, but should not be removed or changed once
they are committed to maintain backwards compatibility.
"""
if schedule_name == "linear":
# Linear schedule from Ho et al, extended to work for any number of
# diffusion steps.
scale = 1000 / num_diffusion_timesteps
return get_beta_schedule(
"linear",
beta_start=scale * 0.0001,
beta_end=scale * 0.02,
num_diffusion_timesteps=num_diffusion_timesteps,
)
elif schedule_name == "squaredcos_cap_v2":
return betas_for_alpha_bar(
num_diffusion_timesteps,
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
)
else:
raise NotImplementedError(f"unknown beta schedule: {schedule_name}")
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
"""
Create a beta schedule that discretizes the given alpha_t_bar function,
which defines the cumulative product of (1-beta) over time from t = [0,1].
:param num_diffusion_timesteps: the number of betas to produce.
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
produces the cumulative product of (1-beta) up to that
part of the diffusion process.
:param max_beta: the maximum beta to use; use values lower than 1 to
prevent singularities.
"""
betas = []
for i in range(num_diffusion_timesteps):
t1 = i / num_diffusion_timesteps
t2 = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
return np.array(betas)
class NoiseScheduleVP:
def __init__(
self,
schedule="discrete",
betas=None,
alphas_cumprod=None,
continuous_beta_0=0.1,
continuous_beta_1=20.0,
dtype=torch.float32,
):
"""Create a wrapper class for the forward SDE (VP type).
***
Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
***
The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
log_alpha_t = self.marginal_log_mean_coeff(t)
sigma_t = self.marginal_std(t)
lambda_t = self.marginal_lambda(t)
Moreover, as lambda(t) is an invertible function, we also support its inverse function:
t = self.inverse_lambda(lambda_t)
===============================================================
We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
1. For discrete-time DPMs:
For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
t_i = (i + 1) / N
e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
Args:
betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
Note that we always have alphas_cumprod = cumprod(1 - betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
**Important**: Please pay special attention for the args for `alphas_cumprod`:
The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
alpha_{t_n} = \sqrt{\hat{alpha_n}},
and
log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
2. For continuous-time DPMs:
We support the linear VPSDE for the continuous time setting. The hyperparameters for the noise
schedule are the default settings in Yang Song's ScoreSDE:
Args:
beta_min: A `float` number. The smallest beta for the linear schedule.
beta_max: A `float` number. The largest beta for the linear schedule.
T: A `float` number. The ending time of the forward process.
===============================================================
Args:
schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
'linear' for continuous-time DPMs.
Returns:
A wrapper object of the forward SDE (VP type).
===============================================================
Example:
# For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
>>> ns = NoiseScheduleVP('discrete', betas=betas)
# For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
>>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
# For continuous-time DPMs (VPSDE), linear schedule:
>>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
"""
if schedule not in ["discrete", "linear"]:
raise ValueError(f"Unsupported noise schedule {schedule}. The schedule needs to be 'discrete' or 'linear'")
self.schedule = schedule
if schedule == "discrete":
if betas is not None:
log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
else:
assert alphas_cumprod is not None
log_alphas = 0.5 * torch.log(alphas_cumprod)
self.T = 1.0
self.log_alpha_array = (
self.numerical_clip_alpha(log_alphas)
.reshape(
(
1,
-1,
)
)
.to(dtype=dtype)
)
self.total_N = self.log_alpha_array.shape[1]
self.t_array = torch.linspace(0.0, 1.0, self.total_N + 1)[1:].reshape((1, -1)).to(dtype=dtype)
else:
self.T = 1.0
self.total_N = 1000
self.beta_0 = continuous_beta_0
self.beta_1 = continuous_beta_1
def numerical_clip_alpha(self, log_alphas, clipped_lambda=-5.1):
"""
For some beta schedules such as cosine schedule, the log-SNR has numerical isssues.
We clip the log-SNR near t=T within -5.1 to ensure the stability.
Such a trick is very useful for diffusion models with the cosine schedule, such as i-DDPM, guided-diffusion and GLIDE.
"""
log_sigmas = 0.5 * torch.log(1.0 - torch.exp(2.0 * log_alphas))
lambs = log_alphas - log_sigmas
idx = torch.searchsorted(torch.flip(lambs, [0]), clipped_lambda)
if idx > 0:
log_alphas = log_alphas[:-idx]
return log_alphas
def marginal_log_mean_coeff(self, t):
"""
Compute log(alpha_t) of a given continuous-time label t in [0, T].
"""
if self.schedule == "discrete":
return interpolate_fn(
t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)
).reshape((-1))
elif self.schedule == "linear":
return -0.25 * t**2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
def marginal_alpha(self, t):
"""
Compute alpha_t of a given continuous-time label t in [0, T].
"""
return torch.exp(self.marginal_log_mean_coeff(t))
def marginal_std(self, t):
"""
Compute sigma_t of a given continuous-time label t in [0, T].
"""
return torch.sqrt(1.0 - torch.exp(2.0 * self.marginal_log_mean_coeff(t)))
def marginal_lambda(self, t):
"""
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
"""
log_mean_coeff = self.marginal_log_mean_coeff(t)
log_std = 0.5 * torch.log(1.0 - torch.exp(2.0 * log_mean_coeff))
return log_mean_coeff - log_std
def inverse_lambda(self, lamb):
"""
Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
"""
if self.schedule == "linear":
tmp = 2.0 * (self.beta_1 - self.beta_0) * torch.logaddexp(-2.0 * lamb, torch.zeros((1,)).to(lamb))
Delta = self.beta_0**2 + tmp
return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
elif self.schedule == "discrete":
log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2.0 * lamb)
t = interpolate_fn(
log_alpha.reshape((-1, 1)),
torch.flip(self.log_alpha_array.to(lamb.device), [1]),
torch.flip(self.t_array.to(lamb.device), [1]),
)
return t.reshape((-1,))
def model_wrapper(
model,
noise_schedule,
model_type="noise",
model_kwargs={},
guidance_type="uncond",
condition=None,
unconditional_condition=None,
guidance_scale=1.0,
classifier_fn=None,
classifier_kwargs={},
):
"""Create a wrapper function for the noise prediction model.
DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
We support four types of the diffusion model by setting `model_type`:
1. "noise": noise prediction model. (Trained by predicting noise).
2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
3. "v": velocity prediction model. (Trained by predicting the velocity).
The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
[1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
arXiv preprint arXiv:2202.00512 (2022).
[2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
arXiv preprint arXiv:2210.02303 (2022).
4. "score": marginal score function. (Trained by denoising score matching).
Note that the score function and the noise prediction model follows a simple relationship:
```
noise(x_t, t) = -sigma_t * score(x_t, t)
```
We support three types of guided sampling by DPMs by setting `guidance_type`:
1. "uncond": unconditional sampling by DPMs.
The input `model` has the following format:
``
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
``
2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
The input `model` has the following format:
``
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
``
The input `classifier_fn` has the following format:
``
classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
``
[3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
The input `model` has the following format:
``
model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
``
And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
[4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
arXiv preprint arXiv:2207.12598 (2022).
The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
or continuous-time labels (i.e. epsilon to T).
We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
``
def model_fn(x, t_continuous) -> noise:
t_input = get_model_input_time(t_continuous)
return noise_pred(model, x, t_input, **model_kwargs)
``
where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
===============================================================
Args:
model: A diffusion model with the corresponding format described above.
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
model_type: A `str`. The parameterization type of the diffusion model.
"noise" or "x_start" or "v" or "score".
model_kwargs: A `dict`. A dict for the other inputs of the model function.
guidance_type: A `str`. The type of the guidance for sampling.
"uncond" or "classifier" or "classifier-free".
condition: A pytorch tensor. The condition for the guided sampling.
Only used for "classifier" or "classifier-free" guidance type.
unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
Only used for "classifier-free" guidance type.
guidance_scale: A `float`. The scale for the guided sampling.
classifier_fn: A classifier function. Only used for the classifier guidance.
classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
Returns:
A noise prediction model that accepts the noised data and the continuous time as the inputs.
"""
def get_model_input_time(t_continuous):
"""
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
For continuous-time DPMs, we just use `t_continuous`.
"""
if noise_schedule.schedule == "discrete":
return (t_continuous - 1.0 / noise_schedule.total_N) * 1000.0
else:
return t_continuous
def noise_pred_fn(x, t_continuous, cond=None):
t_input = get_model_input_time(t_continuous)
if cond is None:
output = model(x, t_input, **model_kwargs)
else:
output = model(x, t_input, cond, **model_kwargs)
if model_type == "noise":
return output
elif model_type == "x_start":
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
return (x - expand_dims(alpha_t, x.dim()) * output) / expand_dims(sigma_t, x.dim())
elif model_type == "v":
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
return expand_dims(alpha_t, x.dim()) * output + expand_dims(sigma_t, x.dim()) * x
elif model_type == "score":
sigma_t = noise_schedule.marginal_std(t_continuous)
return -expand_dims(sigma_t, x.dim()) * output
def cond_grad_fn(x, t_input):
"""
Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
"""
with torch.enable_grad():
x_in = x.detach().requires_grad_(True)
log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
return torch.autograd.grad(log_prob.sum(), x_in)[0]
def model_fn(x, t_continuous):
"""
The noise predicition model function that is used for DPM-Solver.
"""
if guidance_type == "uncond":
return noise_pred_fn(x, t_continuous)
elif guidance_type == "classifier":
assert classifier_fn is not None
t_input = get_model_input_time(t_continuous)
cond_grad = cond_grad_fn(x, t_input)
sigma_t = noise_schedule.marginal_std(t_continuous)
noise = noise_pred_fn(x, t_continuous)
return noise - guidance_scale * expand_dims(sigma_t, x.dim()) * cond_grad
elif guidance_type == "classifier-free":
if guidance_scale == 1.0 or unconditional_condition is None:
return noise_pred_fn(x, t_continuous, cond=condition)
x_in = torch.cat([x] * 2)
t_in = torch.cat([t_continuous] * 2)
c_in = torch.cat([unconditional_condition, condition])
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
return noise_uncond + guidance_scale * (noise - noise_uncond)
assert model_type in ["noise", "x_start", "v", "score"]
assert guidance_type in ["uncond", "classifier", "classifier-free"]
return model_fn
class DPM_Solver:
def __init__(
self,
model_fn,
noise_schedule,
algorithm_type="dpmsolver++",
correcting_x0_fn=None,
correcting_xt_fn=None,
thresholding_max_val=1.0,
dynamic_thresholding_ratio=0.995,
):
"""Construct a DPM-Solver.
We support both DPM-Solver (`algorithm_type="dpmsolver"`) and DPM-Solver++ (`algorithm_type="dpmsolver++"`).
We also support the "dynamic thresholding" method in Imagen[1]. For pixel-space diffusion models, you
can set both `algorithm_type="dpmsolver++"` and `correcting_x0_fn="dynamic_thresholding"` to use the
dynamic thresholding. The "dynamic thresholding" can greatly improve the sample quality for pixel-space
DPMs with large guidance scales. Note that the thresholding method is **unsuitable** for latent-space
DPMs (such as stable-diffusion).
To support advanced algorithms in image-to-image applications, we also support corrector functions for
both x0 and xt.
Args:
model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
``
def model_fn(x, t_continuous):
return noise
``
The shape of `x` is `(batch_size, **shape)`, and the shape of `t_continuous` is `(batch_size,)`.
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
algorithm_type: A `str`. Either "dpmsolver" or "dpmsolver++".
correcting_x0_fn: A `str` or a function with the following format:
```
def correcting_x0_fn(x0, t):
x0_new = ...
return x0_new
```
This function is to correct the outputs of the data prediction model at each sampling step. e.g.,
```
x0_pred = data_pred_model(xt, t)
if correcting_x0_fn is not None:
x0_pred = correcting_x0_fn(x0_pred, t)
xt_1 = update(x0_pred, xt, t)
```
If `correcting_x0_fn="dynamic_thresholding"`, we use the dynamic thresholding proposed in Imagen[1].
correcting_xt_fn: A function with the following format:
```
def correcting_xt_fn(xt, t, step):
x_new = ...
return x_new
```
This function is to correct the intermediate samples xt at each sampling step. e.g.,
```
xt = ...
xt = correcting_xt_fn(xt, t, step)
```
thresholding_max_val: A `float`. The max value for thresholding.
Valid only when use `dpmsolver++` and `correcting_x0_fn="dynamic_thresholding"`.
dynamic_thresholding_ratio: A `float`. The ratio for dynamic thresholding (see Imagen[1] for details).
Valid only when use `dpmsolver++` and `correcting_x0_fn="dynamic_thresholding"`.
[1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour,
Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models
with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
"""
self.model = lambda x, t: model_fn(x, t.expand((x.shape[0])))
self.noise_schedule = noise_schedule
assert algorithm_type in ["dpmsolver", "dpmsolver++"]
self.algorithm_type = algorithm_type
if correcting_x0_fn == "dynamic_thresholding":
self.correcting_x0_fn = self.dynamic_thresholding_fn
else:
self.correcting_x0_fn = correcting_x0_fn
self.correcting_xt_fn = correcting_xt_fn
self.dynamic_thresholding_ratio = dynamic_thresholding_ratio
self.thresholding_max_val = thresholding_max_val
def dynamic_thresholding_fn(self, x0, t):
"""
The dynamic thresholding method.
"""
dims = x0.dim()
p = self.dynamic_thresholding_ratio
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims)
x0 = torch.clamp(x0, -s, s) / s
return x0
def noise_prediction_fn(self, x, t):
"""
Return the noise prediction model.
"""
return self.model(x, t)
def data_prediction_fn(self, x, t):
"""
Return the data prediction model (with corrector).
"""
noise = self.noise_prediction_fn(x, t)
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
x0 = (x - sigma_t * noise) / alpha_t
if self.correcting_x0_fn is not None:
x0 = self.correcting_x0_fn(x0, t)
return x0
def model_fn(self, x, t):
"""
Convert the model to the noise prediction model or the data prediction model.
"""
if self.algorithm_type == "dpmsolver++":
return self.data_prediction_fn(x, t)
else:
return self.noise_prediction_fn(x, t)
def get_time_steps(self, skip_type, t_T, t_0, N, device):
"""Compute the intermediate time steps for sampling.
Args:
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
- 'logSNR': uniform logSNR for the time steps.
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
t_T: A `float`. The starting time of the sampling (default is T).
t_0: A `float`. The ending time of the sampling (default is epsilon).
N: A `int`. The total number of the spacing of the time steps.
device: A torch device.
Returns:
A pytorch tensor of the time steps, with the shape (N + 1,).
"""
if skip_type == "logSNR":
lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
return self.noise_schedule.inverse_lambda(logSNR_steps)
elif skip_type == "time_uniform":
return torch.linspace(t_T, t_0, N + 1).to(device)
elif skip_type == "time_quadratic":
t_order = 2
return torch.linspace(t_T ** (1.0 / t_order), t_0 ** (1.0 / t_order), N + 1).pow(t_order).to(device)
else:
raise ValueError(
f"Unsupported skip_type {skip_type}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'"
)
def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
"""
Get the order of each step for sampling by the singlestep DPM-Solver.
We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
- If order == 1:
We take `steps` of DPM-Solver-1 (i.e. DDIM).
- If order == 2:
- Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
- If steps % 2 == 0, we use K steps of DPM-Solver-2.
- If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
- If order == 3:
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
- If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
- If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
- If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
============================================
Args:
order: A `int`. The max order for the solver (2 or 3).
steps: A `int`. The total number of function evaluations (NFE).
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
- 'logSNR': uniform logSNR for the time steps.
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
t_T: A `float`. The starting time of the sampling (default is T).
t_0: A `float`. The ending time of the sampling (default is epsilon).
device: A torch device.
Returns:
orders: A list of the solver order of each step.
"""
if order == 3:
K = steps // 3 + 1
if steps % 3 == 0:
orders = [
3,
] * (
K - 2
) + [2, 1]
elif steps % 3 == 1:
orders = [
3,
] * (
K - 1
) + [1]
else:
orders = [
3,
] * (
K - 1
) + [2]
elif order == 2:
if steps % 2 == 0:
K = steps // 2
orders = [
2,
] * K
else:
K = steps // 2 + 1
orders = [
2,
] * (
K - 1
) + [1]
elif order == 1:
K = 1
orders = [
1,
] * steps
else:
raise ValueError("'order' must be '1' or '2' or '3'.")
if skip_type == "logSNR":
# To reproduce the results in DPM-Solver paper
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
else:
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[
torch.cumsum(
torch.tensor(
[
0,
]
+ orders
),
0,
).to(device)
]
return timesteps_outer, orders
def denoise_to_zero_fn(self, x, s):
"""
Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
"""
return self.data_prediction_fn(x, s)
def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
"""
DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
Args:
x: A pytorch tensor. The initial value at time `s`.
s: A pytorch tensor. The starting time, with the shape (1,).
t: A pytorch tensor. The ending time, with the shape (1,).
model_s: A pytorch tensor. The model function evaluated at time `s`.
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
return_intermediate: A `bool`. If true, also return the model value at time `s`.
Returns:
x_t: A pytorch tensor. The approximated solution at time `t`.
"""
ns = self.noise_schedule
x.dim()
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
h = lambda_t - lambda_s
log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
alpha_t = torch.exp(log_alpha_t)
if self.algorithm_type == "dpmsolver++":
phi_1 = torch.expm1(-h)
if model_s is None:
model_s = self.model_fn(x, s)
x_t = sigma_t / sigma_s * x - alpha_t * phi_1 * model_s
else:
phi_1 = torch.expm1(h)
if model_s is None:
model_s = self.model_fn(x, s)
x_t = torch.exp(log_alpha_t - log_alpha_s) * x - (sigma_t * phi_1) * model_s
return (x_t, {"model_s": model_s}) if return_intermediate else x_t
def singlestep_dpm_solver_second_update(
self, x, s, t, r1=0.5, model_s=None, return_intermediate=False, solver_type="dpmsolver"
):
"""
Singlestep solver DPM-Solver-2 from time `s` to time `t`.
Args:
x: A pytorch tensor. The initial value at time `s`.
s: A pytorch tensor. The starting time, with the shape (1,).
t: A pytorch tensor. The ending time, with the shape (1,).
r1: A `float`. The hyperparameter of the second-order solver.
model_s: A pytorch tensor. The model function evaluated at time `s`.
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
Returns:
x_t: A pytorch tensor. The approximated solution at time `t`.
"""
if solver_type not in ["dpmsolver", "taylor"]:
raise ValueError(f"'solver_type' must be either 'dpmsolver' or 'taylor', got {solver_type}")
if r1 is None:
r1 = 0.5
ns = self.noise_schedule
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
h = lambda_t - lambda_s
lambda_s1 = lambda_s + r1 * h
s1 = ns.inverse_lambda(lambda_s1)
log_alpha_s, log_alpha_s1, log_alpha_t = (
ns.marginal_log_mean_coeff(s),
ns.marginal_log_mean_coeff(s1),
ns.marginal_log_mean_coeff(t),
)
sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t)
if self.algorithm_type == "dpmsolver++":
phi_11 = torch.expm1(-r1 * h)
phi_1 = torch.expm1(-h)
if model_s is None:
model_s = self.model_fn(x, s)
x_s1 = (sigma_s1 / sigma_s) * x - (alpha_s1 * phi_11) * model_s
model_s1 = self.model_fn(x_s1, s1)
if solver_type == "dpmsolver":
x_t = (
(sigma_t / sigma_s) * x
- (alpha_t * phi_1) * model_s
- (0.5 / r1) * (alpha_t * phi_1) * (model_s1 - model_s)
)
elif solver_type == "taylor":
x_t = (
(sigma_t / sigma_s) * x
- (alpha_t * phi_1) * model_s
+ (1.0 / r1) * (alpha_t * (phi_1 / h + 1.0)) * (model_s1 - model_s)
)
else:
phi_11 = torch.expm1(r1 * h)
phi_1 = torch.expm1(h)
if model_s is None:
model_s = self.model_fn(x, s)
x_s1 = torch.exp(log_alpha_s1 - log_alpha_s) * x - (sigma_s1 * phi_11) * model_s
model_s1 = self.model_fn(x_s1, s1)
if solver_type == "dpmsolver":
x_t = (
torch.exp(log_alpha_t - log_alpha_s) * x
- (sigma_t * phi_1) * model_s
- (0.5 / r1) * (sigma_t * phi_1) * (model_s1 - model_s)
)
elif solver_type == "taylor":
x_t = (
torch.exp(log_alpha_t - log_alpha_s) * x
- (sigma_t * phi_1) * model_s
- (1.0 / r1) * (sigma_t * (phi_1 / h - 1.0)) * (model_s1 - model_s)
)
if return_intermediate:
return x_t, {"model_s": model_s, "model_s1": model_s1}
else:
return x_t
def singlestep_dpm_solver_third_update(
self,
x,
s,
t,
r1=1.0 / 3.0,
r2=2.0 / 3.0,
model_s=None,
model_s1=None,
return_intermediate=False,
solver_type="dpmsolver",
):
"""
Singlestep solver DPM-Solver-3 from time `s` to time `t`.
Args:
x: A pytorch tensor. The initial value at time `s`.
s: A pytorch tensor. The starting time, with the shape (1,).
t: A pytorch tensor. The ending time, with the shape (1,).
r1: A `float`. The hyperparameter of the third-order solver.
r2: A `float`. The hyperparameter of the third-order solver.
model_s: A pytorch tensor. The model function evaluated at time `s`.
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`).
If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
Returns:
x_t: A pytorch tensor. The approximated solution at time `t`.
"""
if solver_type not in ["dpmsolver", "taylor"]:
raise ValueError(f"'solver_type' must be either 'dpmsolver' or 'taylor', got {solver_type}")
if r1 is None:
r1 = 1.0 / 3.0
if r2 is None:
r2 = 2.0 / 3.0
ns = self.noise_schedule
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
h = lambda_t - lambda_s
lambda_s1 = lambda_s + r1 * h
lambda_s2 = lambda_s + r2 * h
s1 = ns.inverse_lambda(lambda_s1)
s2 = ns.inverse_lambda(lambda_s2)
log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = (
ns.marginal_log_mean_coeff(s),
ns.marginal_log_mean_coeff(s1),
ns.marginal_log_mean_coeff(s2),
ns.marginal_log_mean_coeff(t),
)
sigma_s, sigma_s1, sigma_s2, sigma_t = (
ns.marginal_std(s),
ns.marginal_std(s1),
ns.marginal_std(s2),
ns.marginal_std(t),
)
alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t)
if self.algorithm_type == "dpmsolver++":
phi_11 = torch.expm1(-r1 * h)
phi_12 = torch.expm1(-r2 * h)
phi_1 = torch.expm1(-h)
phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.0
phi_2 = phi_1 / h + 1.0
phi_3 = phi_2 / h - 0.5
if model_s is None:
model_s = self.model_fn(x, s)
if model_s1 is None:
x_s1 = (sigma_s1 / sigma_s) * x - (alpha_s1 * phi_11) * model_s
model_s1 = self.model_fn(x_s1, s1)
x_s2 = (
(sigma_s2 / sigma_s) * x
- (alpha_s2 * phi_12) * model_s
+ r2 / r1 * (alpha_s2 * phi_22) * (model_s1 - model_s)
)
model_s2 = self.model_fn(x_s2, s2)
if solver_type == "dpmsolver":
x_t = (
(sigma_t / sigma_s) * x
- (alpha_t * phi_1) * model_s
+ (1.0 / r2) * (alpha_t * phi_2) * (model_s2 - model_s)
)
elif solver_type == "taylor":
D1_0 = (1.0 / r1) * (model_s1 - model_s)
D1_1 = (1.0 / r2) * (model_s2 - model_s)
D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
D2 = 2.0 * (D1_1 - D1_0) / (r2 - r1)
x_t = (
(sigma_t / sigma_s) * x
- (alpha_t * phi_1) * model_s
+ (alpha_t * phi_2) * D1
- (alpha_t * phi_3) * D2
)
else:
phi_11 = torch.expm1(r1 * h)
phi_12 = torch.expm1(r2 * h)
phi_1 = torch.expm1(h)
phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.0
phi_2 = phi_1 / h - 1.0
phi_3 = phi_2 / h - 0.5
if model_s is None:
model_s = self.model_fn(x, s)
if model_s1 is None:
x_s1 = (torch.exp(log_alpha_s1 - log_alpha_s)) * x - (sigma_s1 * phi_11) * model_s
model_s1 = self.model_fn(x_s1, s1)
x_s2 = (
(torch.exp(log_alpha_s2 - log_alpha_s)) * x
- (sigma_s2 * phi_12) * model_s
- r2 / r1 * (sigma_s2 * phi_22) * (model_s1 - model_s)
)
model_s2 = self.model_fn(x_s2, s2)
if solver_type == "dpmsolver":
x_t = (
(torch.exp(log_alpha_t - log_alpha_s)) * x
- (sigma_t * phi_1) * model_s
- (1.0 / r2) * (sigma_t * phi_2) * (model_s2 - model_s)
)
elif solver_type == "taylor":
D1_0 = (1.0 / r1) * (model_s1 - model_s)
D1_1 = (1.0 / r2) * (model_s2 - model_s)
D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
D2 = 2.0 * (D1_1 - D1_0) / (r2 - r1)
x_t = (
(torch.exp(log_alpha_t - log_alpha_s)) * x
- (sigma_t * phi_1) * model_s
- (sigma_t * phi_2) * D1
- (sigma_t * phi_3) * D2
)
if return_intermediate:
return x_t, {"model_s": model_s, "model_s1": model_s1, "model_s2": model_s2}
else:
return x_t
def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpmsolver"):
"""
Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
Args:
x: A pytorch tensor. The initial value at time `s`.
model_prev_list: A list of pytorch tensor. The previous computed model values.
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (1,)
t: A pytorch tensor. The ending time, with the shape (1,).
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
Returns:
x_t: A pytorch tensor. The approximated solution at time `t`.
"""
if solver_type not in ["dpmsolver", "taylor"]:
raise ValueError(f"'solver_type' must be either 'dpmsolver' or 'taylor', got {solver_type}")
ns = self.noise_schedule
model_prev_1, model_prev_0 = model_prev_list[-2], model_prev_list[-1]
t_prev_1, t_prev_0 = t_prev_list[-2], t_prev_list[-1]
lambda_prev_1, lambda_prev_0, lambda_t = (
ns.marginal_lambda(t_prev_1),
ns.marginal_lambda(t_prev_0),
ns.marginal_lambda(t),
)
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
alpha_t = torch.exp(log_alpha_t)
h_0 = lambda_prev_0 - lambda_prev_1
h = lambda_t - lambda_prev_0
r0 = h_0 / h
D1_0 = (1.0 / r0) * (model_prev_0 - model_prev_1)
if self.algorithm_type == "dpmsolver++":
phi_1 = torch.expm1(-h)
if solver_type == "dpmsolver":
x_t = (sigma_t / sigma_prev_0) * x - (alpha_t * phi_1) * model_prev_0 - 0.5 * (alpha_t * phi_1) * D1_0
elif solver_type == "taylor":
x_t = (
(sigma_t / sigma_prev_0) * x
- (alpha_t * phi_1) * model_prev_0
+ (alpha_t * (phi_1 / h + 1.0)) * D1_0
)
else:
phi_1 = torch.expm1(h)
if solver_type == "dpmsolver":
x_t = (
(torch.exp(log_alpha_t - log_alpha_prev_0)) * x
- (sigma_t * phi_1) * model_prev_0
- 0.5 * (sigma_t * phi_1) * D1_0
)
elif solver_type == "taylor":
x_t = (
(torch.exp(log_alpha_t - log_alpha_prev_0)) * x
- (sigma_t * phi_1) * model_prev_0
- (sigma_t * (phi_1 / h - 1.0)) * D1_0
)
return x_t
def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpmsolver"):
"""
Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
Args:
x: A pytorch tensor. The initial value at time `s`.
model_prev_list: A list of pytorch tensor. The previous computed model values.
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (1,)
t: A pytorch tensor. The ending time, with the shape (1,).
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
Returns:
x_t: A pytorch tensor. The approximated solution at time `t`.
"""
ns = self.noise_schedule
model_prev_2, model_prev_1, model_prev_0 = model_prev_list
t_prev_2, t_prev_1, t_prev_0 = t_prev_list
lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = (
ns.marginal_lambda(t_prev_2),
ns.marginal_lambda(t_prev_1),
ns.marginal_lambda(t_prev_0),
ns.marginal_lambda(t),
)
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
alpha_t = torch.exp(log_alpha_t)
h_1 = lambda_prev_1 - lambda_prev_2
h_0 = lambda_prev_0 - lambda_prev_1
h = lambda_t - lambda_prev_0
r0, r1 = h_0 / h, h_1 / h
D1_0 = (1.0 / r0) * (model_prev_0 - model_prev_1)
D1_1 = (1.0 / r1) * (model_prev_1 - model_prev_2)
D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1)
D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1)
if self.algorithm_type == "dpmsolver++":
phi_1 = torch.expm1(-h)
phi_2 = phi_1 / h + 1.0
phi_3 = phi_2 / h - 0.5
return (
(sigma_t / sigma_prev_0) * x
- (alpha_t * phi_1) * model_prev_0
+ (alpha_t * phi_2) * D1
- (alpha_t * phi_3) * D2
)
else:
phi_1 = torch.expm1(h)
phi_2 = phi_1 / h - 1.0
phi_3 = phi_2 / h - 0.5
return (
(torch.exp(log_alpha_t - log_alpha_prev_0)) * x
- (sigma_t * phi_1) * model_prev_0
- (sigma_t * phi_2) * D1
- (sigma_t * phi_3) * D2
)
def singlestep_dpm_solver_update(
self, x, s, t, order, return_intermediate=False, solver_type="dpmsolver", r1=None, r2=None
):
"""
Singlestep DPM-Solver with the order `order` from time `s` to time `t`.
Args:
x: A pytorch tensor. The initial value at time `s`.
s: A pytorch tensor. The starting time, with the shape (1,).
t: A pytorch tensor. The ending time, with the shape (1,).
order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
r1: A `float`. The hyperparameter of the second-order or third-order solver.
r2: A `float`. The hyperparameter of the third-order solver.
Returns:
x_t: A pytorch tensor. The approximated solution at time `t`.
"""
if order == 1:
return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate)
elif order == 2:
return self.singlestep_dpm_solver_second_update(
x, s, t, return_intermediate=return_intermediate, solver_type=solver_type, r1=r1
)
elif order == 3:
return self.singlestep_dpm_solver_third_update(
x, s, t, return_intermediate=return_intermediate, solver_type=solver_type, r1=r1, r2=r2
)
else:
raise ValueError(f"Solver order must be 1 or 2 or 3, got {order}")
def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type="dpmsolver"):
"""
Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
Args:
x: A pytorch tensor. The initial value at time `s`.
model_prev_list: A list of pytorch tensor. The previous computed model values.
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (1,)
t: A pytorch tensor. The ending time, with the shape (1,).
order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
Returns:
x_t: A pytorch tensor. The approximated solution at time `t`.
"""
if order == 1:
return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
elif order == 2:
return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
elif order == 3:
return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
else:
raise ValueError(f"Solver order must be 1 or 2 or 3, got {order}")
def dpm_solver_adaptive(
self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5, solver_type="dpmsolver"
):
"""
The adaptive step size solver based on singlestep DPM-Solver.
Args:
x: A pytorch tensor. The initial value at time `t_T`.
order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
t_T: A `float`. The starting time of the sampling (default is T).
t_0: A `float`. The ending time of the sampling (default is epsilon).
h_init: A `float`. The initial step size (for logSNR).
atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
current time and `t_0` is less than `t_err`. The default setting is 1e-5.
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
Returns:
x_0: A pytorch tensor. The approximated solution at time `t_0`.
[1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
"""
ns = self.noise_schedule
s = t_T * torch.ones((1,)).to(x)
lambda_s = ns.marginal_lambda(s)
lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
h = h_init * torch.ones_like(s).to(x)
x_prev = x
nfe = 0
if order == 2:
r1 = 0.5
lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True)
higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(
x, s, t, r1=r1, solver_type=solver_type, **kwargs
)
elif order == 3:
r1, r2 = 1.0 / 3.0, 2.0 / 3.0
lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(
x, s, t, r1=r1, return_intermediate=True, solver_type=solver_type
)
higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(
x, s, t, r1=r1, r2=r2, solver_type=solver_type, **kwargs
)
else:
raise ValueError(f"For adaptive step size solver, order must be 2 or 3, got {order}")
while torch.abs((s - t_0)).mean() > t_err:
t = ns.inverse_lambda(lambda_s + h)
x_lower, lower_noise_kwargs = lower_update(x, s, t)
x_higher = higher_update(x, s, t, **lower_noise_kwargs)
delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)))
norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True))
E = norm_fn((x_higher - x_lower) / delta).max()
if torch.all(E <= 1.0):
x = x_higher
s = t
x_prev = x_lower
lambda_s = ns.marginal_lambda(s)
h = torch.min(theta * h * torch.float_power(E, -1.0 / order).float(), lambda_0 - lambda_s)
nfe += order
print("adaptive solver nfe", nfe)
return x
def add_noise(self, x, t, noise=None):
"""
Compute the noised input xt = alpha_t * x + sigma_t * noise.
Args:
x: A `torch.Tensor` with shape `(batch_size, *shape)`.
t: A `torch.Tensor` with shape `(t_size,)`.
Returns:
xt with shape `(t_size, batch_size, *shape)`.
"""
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
if noise is None:
noise = torch.randn((t.shape[0], *x.shape), device=x.device)
x = x.reshape((-1, *x.shape))
xt = expand_dims(alpha_t, x.dim()) * x + expand_dims(sigma_t, x.dim()) * noise
return xt.squeeze(0) if t.shape[0] == 1 else xt
def inverse(
self,
x,
steps=20,
t_start=None,
t_end=None,
order=2,
skip_type="time_uniform",
method="multistep",
lower_order_final=True,
denoise_to_zero=False,
solver_type="dpmsolver",
atol=0.0078,
rtol=0.05,
return_intermediate=False,
):
"""
Inverse the sample `x` from time `t_start` to `t_end` by DPM-Solver.
For discrete-time DPMs, we use `t_start=1/N`, where `N` is the total time steps during training.
"""
t_0 = 1.0 / self.noise_schedule.total_N if t_start is None else t_start
t_T = self.noise_schedule.T if t_end is None else t_end
assert (
t_0 > 0 and t_T > 0
), "Time range needs to be greater than 0. For discrete-time DPMs, it needs to be in [1 / N, 1], where N is the length of betas array"
return self.sample(
x,
steps=steps,
t_start=t_0,
t_end=t_T,
order=order,
skip_type=skip_type,
method=method,
lower_order_final=lower_order_final,
denoise_to_zero=denoise_to_zero,
solver_type=solver_type,
atol=atol,
rtol=rtol,
return_intermediate=return_intermediate,
)
def sample(
self,
x,
steps=20,
t_start=None,
t_end=None,
order=2,
skip_type="time_uniform",
method="multistep",
lower_order_final=True,
denoise_to_zero=False,
solver_type="dpmsolver",
atol=0.0078,
rtol=0.05,
return_intermediate=False,
):
"""
Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`.
=====================================================
We support the following algorithms for both noise prediction model and data prediction model:
- 'singlestep':
Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver.
We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps).
The total number of function evaluations (NFE) == `steps`.
Given a fixed NFE == `steps`, the sampling procedure is:
- If `order` == 1:
- Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM).
- If `order` == 2:
- Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling.
- If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2.
- If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
- If `order` == 3:
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
- If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
- If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1.
- If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2.
- 'multistep':
Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`.
We initialize the first `order` values by lower order multistep solvers.
Given a fixed NFE == `steps`, the sampling procedure is:
Denote K = steps.
- If `order` == 1:
- We use K steps of DPM-Solver-1 (i.e. DDIM).
- If `order` == 2:
- We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2.
- If `order` == 3:
- We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3.
- 'singlestep_fixed':
Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3).
We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE.
- 'adaptive':
Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper).
We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`.
You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs
(NFE) and the sample quality.
- If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2.
- If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3.
=====================================================
Some advices for choosing the algorithm:
- For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs:
Use singlestep DPM-Solver or DPM-Solver++ ("DPM-Solver-fast" in the paper) with `order = 3`.
e.g., DPM-Solver:
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver")
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
skip_type='time_uniform', method='singlestep')
e.g., DPM-Solver++:
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++")
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
skip_type='time_uniform', method='singlestep')
- For **guided sampling with large guidance scale** by DPMs:
Use multistep DPM-Solver with `algorithm_type="dpmsolver++"` and `order = 2`.
e.g.
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++")
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2,
skip_type='time_uniform', method='multistep')
We support three types of `skip_type`:
- 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images**
- 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**.
- 'time_quadratic': quadratic time for the time steps.
=====================================================
Args:
x: A pytorch tensor. The initial value at time `t_start`
e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution.
steps: A `int`. The total number of function evaluations (NFE).
t_start: A `float`. The starting time of the sampling.
If `T` is None, we use self.noise_schedule.T (default is 1.0).
t_end: A `float`. The ending time of the sampling.
If `t_end` is None, we use 1. / self.noise_schedule.total_N.
e.g. if total_N == 1000, we have `t_end` == 1e-3.
For discrete-time DPMs:
- We recommend `t_end` == 1. / self.noise_schedule.total_N.
For continuous-time DPMs:
- We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15.
order: A `int`. The order of DPM-Solver.
skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'.
method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'.
denoise_to_zero: A `bool`. Whether to denoise to time 0 at the final step.
Default is `False`. If `denoise_to_zero` is `True`, the total NFE is (`steps` + 1).
This trick is firstly proposed by DDPM (https://arxiv.org/abs/2006.11239) and
score_sde (https://arxiv.org/abs/2011.13456). Such trick can improve the FID
for diffusion models sampling by diffusion SDEs for low-resolutional images
(such as CIFAR-10). However, we observed that such trick does not matter for
high-resolutional images. As it needs an additional NFE, we do not recommend
it for high-resolutional images.
lower_order_final: A `bool`. Whether to use lower order solvers at the final steps.
Only valid for `method=multistep` and `steps < 15`. We empirically find that
this trick is a key to stabilizing the sampling by DPM-Solver with very few steps
(especially for steps <= 10). So we recommend to set it to be `True`.
solver_type: A `str`. The taylor expansion type for the solver. `dpmsolver` or `taylor`. We recommend `dpmsolver`.
atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
return_intermediate: A `bool`. Whether to save the xt at each step.
When set to `True`, method returns a tuple (x0, intermediates); when set to False, method returns only x0.
Returns:
x_end: A pytorch tensor. The approximated solution at time `t_end`.
"""
t_0 = 1.0 / self.noise_schedule.total_N if t_end is None else t_end
t_T = self.noise_schedule.T if t_start is None else t_start
assert (
t_0 > 0 and t_T > 0
), "Time range needs to be greater than 0. For discrete-time DPMs, it needs to be in [1 / N, 1], where N is the length of betas array"
if return_intermediate:
assert method in [
"multistep",
"singlestep",
"singlestep_fixed",
], "Cannot use adaptive solver when saving intermediate values"
if self.correcting_xt_fn is not None:
assert method in [
"multistep",
"singlestep",
"singlestep_fixed",
], "Cannot use adaptive solver when correcting_xt_fn is not None"
device = x.device
intermediates = []
with torch.no_grad():
if method == "adaptive":
x = self.dpm_solver_adaptive(
x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol, solver_type=solver_type
)
elif method == "multistep":
assert steps >= order
timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
assert timesteps.shape[0] - 1 == steps
# Init the initial values.
step = 0
t = timesteps[step]
t_prev_list = [t]
model_prev_list = [self.model_fn(x, t)]
if self.correcting_xt_fn is not None:
x = self.correcting_xt_fn(x, t, step)
if return_intermediate:
intermediates.append(x)
# Init the first `order` values by lower order multistep DPM-Solver.
for step in range(1, order):
t = timesteps[step]
x = self.multistep_dpm_solver_update(
x, model_prev_list, t_prev_list, t, step, solver_type=solver_type
)
if self.correcting_xt_fn is not None:
x = self.correcting_xt_fn(x, t, step)
if return_intermediate:
intermediates.append(x)
t_prev_list.append(t)
model_prev_list.append(self.model_fn(x, t))
# Compute the remaining values by `order`-th order multistep DPM-Solver.
for step in tqdm(range(order, steps + 1)):
t = timesteps[step]
# We only use lower order for steps < 10
if lower_order_final and steps < 10:
step_order = min(order, steps + 1 - step)
else:
step_order = order
x = self.multistep_dpm_solver_update(
x, model_prev_list, t_prev_list, t, step_order, solver_type=solver_type
)
if self.correcting_xt_fn is not None:
x = self.correcting_xt_fn(x, t, step)
if return_intermediate:
intermediates.append(x)
for i in range(order - 1):
t_prev_list[i] = t_prev_list[i + 1]
model_prev_list[i] = model_prev_list[i + 1]
t_prev_list[-1] = t
# We do not need to evaluate the final model value.
if step < steps:
model_prev_list[-1] = self.model_fn(x, t)
elif method in ["singlestep", "singlestep_fixed"]:
if method == "singlestep":
timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(
steps=steps, order=order, skip_type=skip_type, t_T=t_T, t_0=t_0, device=device
)
elif method == "singlestep_fixed":
K = steps // order
orders = [
order,
] * K
timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device)
for step, order in enumerate(orders):
s, t = timesteps_outer[step], timesteps_outer[step + 1]
timesteps_inner = self.get_time_steps(
skip_type=skip_type, t_T=s.item(), t_0=t.item(), N=order, device=device
)
lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner)
h = lambda_inner[-1] - lambda_inner[0]
r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h
r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h
x = self.singlestep_dpm_solver_update(x, s, t, order, solver_type=solver_type, r1=r1, r2=r2)
if self.correcting_xt_fn is not None:
x = self.correcting_xt_fn(x, t, step)
if return_intermediate:
intermediates.append(x)
else:
raise ValueError(f"Got wrong method {method}")
if denoise_to_zero:
t = torch.ones((1,)).to(device) * t_0
x = self.denoise_to_zero_fn(x, t)
if self.correcting_xt_fn is not None:
x = self.correcting_xt_fn(x, t, step + 1)
if return_intermediate:
intermediates.append(x)
return (x, intermediates) if return_intermediate else x
#############################################################
# other utility functions
#############################################################
def interpolate_fn(x, xp, yp):
"""
A piecewise linear function y = f(x), using xp and yp as keypoints.
We implement f(x) in a differentiable way (i.e. applicable for autograd).
The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
Args:
x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
yp: PyTorch tensor with shape [C, K].
Returns:
The function values f(x), with shape [N, C].
"""
N, K = x.shape[0], xp.shape[1]
all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
sorted_all_x, x_indices = torch.sort(all_x, dim=2)
x_idx = torch.argmin(x_indices, dim=2)
cand_start_idx = x_idx - 1
start_idx = torch.where(
torch.eq(x_idx, 0),
torch.tensor(1, device=x.device),
torch.where(
torch.eq(x_idx, K),
torch.tensor(K - 2, device=x.device),
cand_start_idx,
),
)
end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
start_idx2 = torch.where(
torch.eq(x_idx, 0),
torch.tensor(0, device=x.device),
torch.where(
torch.eq(x_idx, K),
torch.tensor(K - 2, device=x.device),
cand_start_idx,
),
)
y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
return start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
def expand_dims(v, dims):
"""
Expand the tensor `v` to the dim `dims`.
Args:
`v`: a PyTorch tensor with shape [N].
`dim`: a `int`.
Returns:
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
"""
return v[(...,) + (None,) * (dims - 1)]
def DPMS(
model,
condition,
uncondition,
cfg_scale,
model_type="noise",
noise_schedule="linear",
guidance_type="classifier-free",
model_kwargs=None,
diffusion_steps=1000,
):
if model_kwargs is None:
model_kwargs = {}
betas = torch.tensor(get_named_beta_schedule(noise_schedule, diffusion_steps))
## 1. Define the noise schedule.
noise_schedule = NoiseScheduleVP(schedule="discrete", betas=betas)
## 2. Convert your discrete-time `model` to the continuous-time
## noise prediction model. Here is an example for a diffusion model
## `model` with the noise prediction type ("noise") .
model_fn = model_wrapper(
model,
noise_schedule,
model_type=model_type,
model_kwargs=model_kwargs,
guidance_type=guidance_type,
condition=condition,
unconditional_condition=uncondition,
guidance_scale=cfg_scale,
)
## 3. Define dpm-solver and sample by multistep DPM-Solver.
return DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++")
|