Spaces:
Runtime error
Runtime error
File size: 7,176 Bytes
e7d5680 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import collections
import importlib
import logging
import os
import time
from collections import OrderedDict
from collections.abc import Sequence
from itertools import repeat
import numpy as np
import torch
import torch.distributed as dist
def print_rank(var_name, var_value, rank=0):
if dist.get_rank() == rank:
print(f"[Rank {rank}] {var_name}: {var_value}")
def print_0(*args, **kwargs):
if dist.get_rank() == 0:
print(*args, **kwargs)
def requires_grad(model: torch.nn.Module, flag: bool = True) -> None:
"""
Set requires_grad flag for all parameters in a model.
"""
for p in model.parameters():
p.requires_grad = flag
def format_numel_str(numel: int) -> str:
B = 1024**3
M = 1024**2
K = 1024
if numel >= B:
return f"{numel / B:.2f} B"
elif numel >= M:
return f"{numel / M:.2f} M"
elif numel >= K:
return f"{numel / K:.2f} K"
else:
return f"{numel}"
def all_reduce_mean(tensor: torch.Tensor) -> torch.Tensor:
dist.all_reduce(tensor=tensor, op=dist.ReduceOp.SUM)
tensor.div_(dist.get_world_size())
return tensor
def get_model_numel(model: torch.nn.Module) -> (int, int):
num_params = 0
num_params_trainable = 0
for p in model.parameters():
num_params += p.numel()
if p.requires_grad:
num_params_trainable += p.numel()
return num_params, num_params_trainable
def try_import(name):
"""Try to import a module.
Args:
name (str): Specifies what module to import in absolute or relative
terms (e.g. either pkg.mod or ..mod).
Returns:
ModuleType or None: If importing successfully, returns the imported
module, otherwise returns None.
"""
try:
return importlib.import_module(name)
except ImportError:
return None
def transpose(x):
"""
transpose a list of list
Args:
x (list[list]):
"""
ret = list(map(list, zip(*x)))
return ret
def get_timestamp():
timestamp = time.strftime("%Y%m%d-%H%M%S", time.localtime(time.time()))
return timestamp
def format_time(seconds):
days = int(seconds / 3600 / 24)
seconds = seconds - days * 3600 * 24
hours = int(seconds / 3600)
seconds = seconds - hours * 3600
minutes = int(seconds / 60)
seconds = seconds - minutes * 60
secondsf = int(seconds)
seconds = seconds - secondsf
millis = int(seconds * 1000)
f = ""
i = 1
if days > 0:
f += str(days) + "D"
i += 1
if hours > 0 and i <= 2:
f += str(hours) + "h"
i += 1
if minutes > 0 and i <= 2:
f += str(minutes) + "m"
i += 1
if secondsf > 0 and i <= 2:
f += str(secondsf) + "s"
i += 1
if millis > 0 and i <= 2:
f += str(millis) + "ms"
i += 1
if f == "":
f = "0ms"
return f
def to_tensor(data):
"""Convert objects of various python types to :obj:`torch.Tensor`.
Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`,
:class:`Sequence`, :class:`int` and :class:`float`.
Args:
data (torch.Tensor | numpy.ndarray | Sequence | int | float): Data to
be converted.
"""
if isinstance(data, torch.Tensor):
return data
elif isinstance(data, np.ndarray):
return torch.from_numpy(data)
elif isinstance(data, Sequence) and not isinstance(data, str):
return torch.tensor(data)
elif isinstance(data, int):
return torch.LongTensor([data])
elif isinstance(data, float):
return torch.FloatTensor([data])
else:
raise TypeError(f"type {type(data)} cannot be converted to tensor.")
def to_ndarray(data):
if isinstance(data, torch.Tensor):
return data.numpy()
elif isinstance(data, np.ndarray):
return data
elif isinstance(data, Sequence):
return np.array(data)
elif isinstance(data, int):
return np.ndarray([data], dtype=int)
elif isinstance(data, float):
return np.array([data], dtype=float)
else:
raise TypeError(f"type {type(data)} cannot be converted to ndarray.")
def to_torch_dtype(dtype):
if isinstance(dtype, torch.dtype):
return dtype
elif isinstance(dtype, str):
dtype_mapping = {
"float64": torch.float64,
"float32": torch.float32,
"float16": torch.float16,
"fp32": torch.float32,
"fp16": torch.float16,
"half": torch.float16,
"bf16": torch.bfloat16,
}
if dtype not in dtype_mapping:
raise ValueError
dtype = dtype_mapping[dtype]
return dtype
else:
raise ValueError
def count_params(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def _ntuple(n):
def parse(x):
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
return x
return tuple(repeat(x, n))
return parse
to_1tuple = _ntuple(1)
to_2tuple = _ntuple(2)
to_3tuple = _ntuple(3)
to_4tuple = _ntuple(4)
to_ntuple = _ntuple
def convert_SyncBN_to_BN2d(model_cfg):
for k in model_cfg:
v = model_cfg[k]
if k == "norm_cfg" and v["type"] == "SyncBN":
v["type"] = "BN2d"
elif isinstance(v, dict):
convert_SyncBN_to_BN2d(v)
def get_topk(x, dim=4, k=5):
x = to_tensor(x)
inds = x[..., dim].topk(k)[1]
return x[inds]
def param_sigmoid(x, alpha):
ret = 1 / (1 + (-alpha * x).exp())
return ret
def inverse_param_sigmoid(x, alpha, eps=1e-5):
x = x.clamp(min=0, max=1)
x1 = x.clamp(min=eps)
x2 = (1 - x).clamp(min=eps)
return torch.log(x1 / x2) / alpha
def inverse_sigmoid(x, eps=1e-5):
"""Inverse function of sigmoid.
Args:
x (Tensor): The tensor to do the
inverse.
eps (float): EPS avoid numerical
overflow. Defaults 1e-5.
Returns:
Tensor: The x has passed the inverse
function of sigmoid, has same
shape with input.
"""
x = x.clamp(min=0, max=1)
x1 = x.clamp(min=eps)
x2 = (1 - x).clamp(min=eps)
return torch.log(x1 / x2)
def count_columns(df, columns):
cnt_dict = OrderedDict()
num_samples = len(df)
for col in columns:
d_i = df[col].value_counts().to_dict()
for k in d_i:
d_i[k] = (d_i[k], d_i[k] / num_samples)
cnt_dict[col] = d_i
return cnt_dict
def build_logger(work_dir, cfgname):
log_file = cfgname + ".log"
log_path = os.path.join(work_dir, log_file)
logger = logging.getLogger(cfgname)
logger.setLevel(logging.INFO)
# formatter = logging.Formatter('%(asctime)s %(levelname)s %(message)s')
formatter = logging.Formatter("%(asctime)s: %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
handler1 = logging.FileHandler(log_path)
handler1.setFormatter(formatter)
handler2 = logging.StreamHandler()
handler2.setFormatter(formatter)
logger.addHandler(handler1)
logger.addHandler(handler2)
logger.propagate = False
return logger
|