Spaces:
Runtime error
Runtime error
File size: 5,329 Bytes
e7d5680 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import torch
import torch.distributed as dist
# ====================
# All-To-All
# ====================
def _all_to_all(
input_: torch.Tensor,
world_size: int,
group: dist.ProcessGroup,
scatter_dim: int,
gather_dim: int,
):
input_list = [t.contiguous() for t in torch.tensor_split(input_, world_size, scatter_dim)]
output_list = [torch.empty_like(input_list[0]) for _ in range(world_size)]
dist.all_to_all(output_list, input_list, group=group)
return torch.cat(output_list, dim=gather_dim).contiguous()
class _AllToAll(torch.autograd.Function):
"""All-to-all communication.
Args:
input_: input matrix
process_group: communication group
scatter_dim: scatter dimension
gather_dim: gather dimension
"""
@staticmethod
def forward(ctx, input_, process_group, scatter_dim, gather_dim):
ctx.process_group = process_group
ctx.scatter_dim = scatter_dim
ctx.gather_dim = gather_dim
ctx.world_size = dist.get_world_size(process_group)
output = _all_to_all(input_, ctx.world_size, process_group, scatter_dim, gather_dim)
return output
@staticmethod
def backward(ctx, grad_output):
grad_output = _all_to_all(
grad_output,
ctx.world_size,
ctx.process_group,
ctx.gather_dim,
ctx.scatter_dim,
)
return (
grad_output,
None,
None,
None,
)
def all_to_all(
input_: torch.Tensor,
process_group: dist.ProcessGroup,
scatter_dim: int = 2,
gather_dim: int = 1,
):
return _AllToAll.apply(input_, process_group, scatter_dim, gather_dim)
def _gather(
input_: torch.Tensor,
world_size: int,
group: dist.ProcessGroup,
gather_dim: int,
):
if gather_list is None:
gather_list = [torch.empty_like(input_) for _ in range(world_size)]
dist.gather(input_, gather_list, group=group, gather_dim=gather_dim)
return gather_list
# ====================
# Gather-Split
# ====================
def _split(input_, pg: dist.ProcessGroup, dim=-1):
# skip if only one rank involved
world_size = dist.get_world_size(pg)
rank = dist.get_rank(pg)
if world_size == 1:
return input_
# Split along last dimension.
dim_size = input_.size(dim)
assert dim_size % world_size == 0, (
f"The dimension to split ({dim_size}) is not a multiple of world size ({world_size}), "
f"cannot split tensor evenly"
)
tensor_list = torch.split(input_, dim_size // world_size, dim=dim)
output = tensor_list[rank].contiguous()
return output
def _gather(input_, pg: dist.ProcessGroup, dim=-1):
# skip if only one rank involved
input_ = input_.contiguous()
world_size = dist.get_world_size(pg)
dist.get_rank(pg)
if world_size == 1:
return input_
# all gather
tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
assert input_.device.type == "cuda"
torch.distributed.all_gather(tensor_list, input_, group=pg)
# concat
output = torch.cat(tensor_list, dim=dim).contiguous()
return output
class _GatherForwardSplitBackward(torch.autograd.Function):
"""Gather the input from model parallel region and concatenate.
Args:
input_: input matrix.
process_group: parallel mode.
dim: dimension
"""
@staticmethod
def symbolic(graph, input_):
return _gather(input_)
@staticmethod
def forward(ctx, input_, process_group, dim, grad_scale):
ctx.mode = process_group
ctx.dim = dim
ctx.grad_scale = grad_scale
return _gather(input_, process_group, dim)
@staticmethod
def backward(ctx, grad_output):
if ctx.grad_scale == "up":
grad_output = grad_output * dist.get_world_size(ctx.mode)
elif ctx.grad_scale == "down":
grad_output = grad_output / dist.get_world_size(ctx.mode)
return _split(grad_output, ctx.mode, ctx.dim), None, None, None
class _SplitForwardGatherBackward(torch.autograd.Function):
"""
Split the input and keep only the corresponding chuck to the rank.
Args:
input_: input matrix.
process_group: parallel mode.
dim: dimension
"""
@staticmethod
def symbolic(graph, input_):
return _split(input_)
@staticmethod
def forward(ctx, input_, process_group, dim, grad_scale):
ctx.mode = process_group
ctx.dim = dim
ctx.grad_scale = grad_scale
return _split(input_, process_group, dim)
@staticmethod
def backward(ctx, grad_output):
if ctx.grad_scale == "up":
grad_output = grad_output * dist.get_world_size(ctx.mode)
elif ctx.grad_scale == "down":
grad_output = grad_output / dist.get_world_size(ctx.mode)
return _gather(grad_output, ctx.mode, ctx.dim), None, None, None
def split_forward_gather_backward(input_, process_group, dim, grad_scale=1.0):
return _SplitForwardGatherBackward.apply(input_, process_group, dim, grad_scale)
def gather_forward_split_backward(input_, process_group, dim, grad_scale=None):
return _GatherForwardSplitBackward.apply(input_, process_group, dim, grad_scale)
|