Spaces:
kadirnar
/
Running on Zero

File size: 10,834 Bytes
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# Copyright (c) Facebook, Inc. and its affiliates.
import copy
import numpy as np
import torch
from fvcore.transforms import HFlipTransform, TransformList
from torch.nn import functional as F

from detectron2.data.transforms import RandomRotation, RotationTransform, apply_transform_gens
from detectron2.modeling.postprocessing import detector_postprocess
from detectron2.modeling.test_time_augmentation import DatasetMapperTTA, GeneralizedRCNNWithTTA

from ..converters import HFlipConverter


class DensePoseDatasetMapperTTA(DatasetMapperTTA):
    def __init__(self, cfg):
        super().__init__(cfg=cfg)
        self.angles = cfg.TEST.AUG.ROTATION_ANGLES

    def __call__(self, dataset_dict):
        ret = super().__call__(dataset_dict=dataset_dict)
        numpy_image = dataset_dict["image"].permute(1, 2, 0).numpy()
        for angle in self.angles:
            rotate = RandomRotation(angle=angle, expand=True)
            new_numpy_image, tfms = apply_transform_gens([rotate], np.copy(numpy_image))
            torch_image = torch.from_numpy(np.ascontiguousarray(new_numpy_image.transpose(2, 0, 1)))
            dic = copy.deepcopy(dataset_dict)
            # In DatasetMapperTTA, there is a pre_tfm transform (resize or no-op) that is
            # added at the beginning of each TransformList. That's '.transforms[0]'.
            dic["transforms"] = TransformList(
                [ret[-1]["transforms"].transforms[0]] + tfms.transforms
            )
            dic["image"] = torch_image
            ret.append(dic)
        return ret


class DensePoseGeneralizedRCNNWithTTA(GeneralizedRCNNWithTTA):
    def __init__(self, cfg, model, transform_data, tta_mapper=None, batch_size=1):
        """
        Args:
            cfg (CfgNode):
            model (GeneralizedRCNN): a GeneralizedRCNN to apply TTA on.
            transform_data (DensePoseTransformData): contains symmetry label
                transforms used for horizontal flip
            tta_mapper (callable): takes a dataset dict and returns a list of
                augmented versions of the dataset dict. Defaults to
                `DatasetMapperTTA(cfg)`.
            batch_size (int): batch the augmented images into this batch size for inference.
        """
        self._transform_data = transform_data.to(model.device)
        super().__init__(cfg=cfg, model=model, tta_mapper=tta_mapper, batch_size=batch_size)

    # the implementation follows closely the one from detectron2/modeling
    def _inference_one_image(self, input):
        """
        Args:
            input (dict): one dataset dict with "image" field being a CHW tensor

        Returns:
            dict: one output dict
        """
        orig_shape = (input["height"], input["width"])
        # For some reason, resize with uint8 slightly increases box AP but decreases densepose AP
        input["image"] = input["image"].to(torch.uint8)
        augmented_inputs, tfms = self._get_augmented_inputs(input)
        # Detect boxes from all augmented versions
        with self._turn_off_roi_heads(["mask_on", "keypoint_on", "densepose_on"]):
            # temporarily disable roi heads
            all_boxes, all_scores, all_classes = self._get_augmented_boxes(augmented_inputs, tfms)
        merged_instances = self._merge_detections(all_boxes, all_scores, all_classes, orig_shape)

        if self.cfg.MODEL.MASK_ON or self.cfg.MODEL.DENSEPOSE_ON:
            # Use the detected boxes to obtain new fields
            augmented_instances = self._rescale_detected_boxes(
                augmented_inputs, merged_instances, tfms
            )
            # run forward on the detected boxes
            outputs = self._batch_inference(augmented_inputs, augmented_instances)
            # Delete now useless variables to avoid being out of memory
            del augmented_inputs, augmented_instances
            # average the predictions
            if self.cfg.MODEL.MASK_ON:
                merged_instances.pred_masks = self._reduce_pred_masks(outputs, tfms)
            if self.cfg.MODEL.DENSEPOSE_ON:
                merged_instances.pred_densepose = self._reduce_pred_densepose(outputs, tfms)
            # postprocess
            merged_instances = detector_postprocess(merged_instances, *orig_shape)
            return {"instances": merged_instances}
        else:
            return {"instances": merged_instances}

    def _get_augmented_boxes(self, augmented_inputs, tfms):
        # Heavily based on detectron2/modeling/test_time_augmentation.py
        # Only difference is that RotationTransform is excluded from bbox computation
        # 1: forward with all augmented images
        outputs = self._batch_inference(augmented_inputs)
        # 2: union the results
        all_boxes = []
        all_scores = []
        all_classes = []
        for output, tfm in zip(outputs, tfms):
            # Need to inverse the transforms on boxes, to obtain results on original image
            if not any(isinstance(t, RotationTransform) for t in tfm.transforms):
                # Some transforms can't compute bbox correctly
                pred_boxes = output.pred_boxes.tensor
                original_pred_boxes = tfm.inverse().apply_box(pred_boxes.cpu().numpy())
                all_boxes.append(torch.from_numpy(original_pred_boxes).to(pred_boxes.device))
                all_scores.extend(output.scores)
                all_classes.extend(output.pred_classes)
        all_boxes = torch.cat(all_boxes, dim=0)
        return all_boxes, all_scores, all_classes

    def _reduce_pred_densepose(self, outputs, tfms):
        # Should apply inverse transforms on densepose preds.
        # We assume only rotation, resize & flip are used. pred_masks is a scale-invariant
        # representation, so we handle the other ones specially
        for idx, (output, tfm) in enumerate(zip(outputs, tfms)):
            for t in tfm.transforms:
                for attr in ["coarse_segm", "fine_segm", "u", "v"]:
                    setattr(
                        output.pred_densepose,
                        attr,
                        _inverse_rotation(
                            getattr(output.pred_densepose, attr), output.pred_boxes.tensor, t
                        ),
                    )
            if any(isinstance(t, HFlipTransform) for t in tfm.transforms):
                output.pred_densepose = HFlipConverter.convert(
                    output.pred_densepose, self._transform_data
                )
            self._incremental_avg_dp(outputs[0].pred_densepose, output.pred_densepose, idx)
        return outputs[0].pred_densepose

    # incrementally computed average: u_(n + 1) = u_n + (x_(n+1) - u_n) / (n + 1).
    def _incremental_avg_dp(self, avg, new_el, idx):
        for attr in ["coarse_segm", "fine_segm", "u", "v"]:
            setattr(avg, attr, (getattr(avg, attr) * idx + getattr(new_el, attr)) / (idx + 1))
            if idx:
                # Deletion of the > 0 index intermediary values to prevent GPU OOM
                setattr(new_el, attr, None)
        return avg


def _inverse_rotation(densepose_attrs, boxes, transform):
    # resample outputs to image size and rotate back the densepose preds
    # on the rotated images to the space of the original image
    if len(boxes) == 0 or not isinstance(transform, RotationTransform):
        return densepose_attrs
    boxes = boxes.int().cpu().numpy()
    wh_boxes = boxes[:, 2:] - boxes[:, :2]  # bboxes in the rotated space
    inv_boxes = rotate_box_inverse(transform, boxes).astype(int)  # bboxes in original image
    wh_diff = (inv_boxes[:, 2:] - inv_boxes[:, :2] - wh_boxes) // 2  # diff between new/old bboxes
    rotation_matrix = torch.tensor([transform.rm_image]).to(device=densepose_attrs.device).float()
    rotation_matrix[:, :, -1] = 0
    # To apply grid_sample for rotation, we need to have enough space to fit the original and
    # rotated bboxes. l_bds and r_bds are the left/right bounds that will be used to
    # crop the difference once the rotation is done
    l_bds = np.maximum(0, -wh_diff)
    for i in range(len(densepose_attrs)):
        if min(wh_boxes[i]) <= 0:
            continue
        densepose_attr = densepose_attrs[[i]].clone()
        # 1. Interpolate densepose attribute to size of the rotated bbox
        densepose_attr = F.interpolate(densepose_attr, wh_boxes[i].tolist()[::-1], mode="bilinear")
        # 2. Pad the interpolated attribute so it has room for the original + rotated bbox
        densepose_attr = F.pad(densepose_attr, tuple(np.repeat(np.maximum(0, wh_diff[i]), 2)))
        # 3. Compute rotation grid and transform
        grid = F.affine_grid(rotation_matrix, size=densepose_attr.shape)
        densepose_attr = F.grid_sample(densepose_attr, grid)
        # 4. Compute right bounds and crop the densepose_attr to the size of the original bbox
        r_bds = densepose_attr.shape[2:][::-1] - l_bds[i]
        densepose_attr = densepose_attr[:, :, l_bds[i][1] : r_bds[1], l_bds[i][0] : r_bds[0]]
        if min(densepose_attr.shape) > 0:
            # Interpolate back to the original size of the densepose attribute
            densepose_attr = F.interpolate(
                densepose_attr, densepose_attrs.shape[-2:], mode="bilinear"
            )
            # Adding a very small probability to the background class to fill padded zones
            densepose_attr[:, 0] += 1e-10
            densepose_attrs[i] = densepose_attr
    return densepose_attrs


def rotate_box_inverse(rot_tfm, rotated_box):
    """
    rotated_box is a N * 4 array of [x0, y0, x1, y1] boxes
    When a bbox is rotated, it gets bigger, because we need to surround the tilted bbox
    So when a bbox is rotated then inverse-rotated, it is much bigger than the original
    This function aims to invert the rotation on the box, but also resize it to its original size
    """
    # 1. Compute the inverse rotation of the rotated bboxes (bigger than it )
    invrot_box = rot_tfm.inverse().apply_box(rotated_box)
    h, w = rotated_box[:, 3] - rotated_box[:, 1], rotated_box[:, 2] - rotated_box[:, 0]
    ih, iw = invrot_box[:, 3] - invrot_box[:, 1], invrot_box[:, 2] - invrot_box[:, 0]
    assert 2 * rot_tfm.abs_sin**2 != 1, "45 degrees angle can't be inverted"
    # 2. Inverse the corresponding computation in the rotation transform
    # to get the original height/width of the rotated boxes
    orig_h = (h * rot_tfm.abs_cos - w * rot_tfm.abs_sin) / (1 - 2 * rot_tfm.abs_sin**2)
    orig_w = (w * rot_tfm.abs_cos - h * rot_tfm.abs_sin) / (1 - 2 * rot_tfm.abs_sin**2)
    # 3. Resize the inverse-rotated bboxes to their original size
    invrot_box[:, 0] += (iw - orig_w) / 2
    invrot_box[:, 1] += (ih - orig_h) / 2
    invrot_box[:, 2] -= (iw - orig_w) / 2
    invrot_box[:, 3] -= (ih - orig_h) / 2

    return invrot_box