Spaces:
kadirnar
/
Runtime error

File size: 3,480 Bytes
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# Copyright (c) Facebook, Inc. and its affiliates.

from typing import Any, Tuple, Type
import torch


class BaseConverter:
    """
    Converter base class to be reused by various converters.
    Converter allows one to convert data from various source types to a particular
    destination type. Each source type needs to register its converter. The
    registration for each source type is valid for all descendants of that type.
    """

    @classmethod
    def register(cls, from_type: Type, converter: Any = None):
        """
        Registers a converter for the specified type.
        Can be used as a decorator (if converter is None), or called as a method.

        Args:
            from_type (type): type to register the converter for;
                all instances of this type will use the same converter
            converter (callable): converter to be registered for the given
                type; if None, this method is assumed to be a decorator for the converter
        """

        if converter is not None:
            cls._do_register(from_type, converter)

        def wrapper(converter: Any) -> Any:
            cls._do_register(from_type, converter)
            return converter

        return wrapper

    @classmethod
    def _do_register(cls, from_type: Type, converter: Any):
        cls.registry[from_type] = converter  # pyre-ignore[16]

    @classmethod
    def _lookup_converter(cls, from_type: Type) -> Any:
        """
        Perform recursive lookup for the given type
        to find registered converter. If a converter was found for some base
        class, it gets registered for this class to save on further lookups.

        Args:
            from_type: type for which to find a converter
        Return:
            callable or None - registered converter or None
                if no suitable entry was found in the registry
        """
        if from_type in cls.registry:  # pyre-ignore[16]
            return cls.registry[from_type]
        for base in from_type.__bases__:
            converter = cls._lookup_converter(base)
            if converter is not None:
                cls._do_register(from_type, converter)
                return converter
        return None

    @classmethod
    def convert(cls, instance: Any, *args, **kwargs):
        """
        Convert an instance to the destination type using some registered
        converter. Does recursive lookup for base classes, so there's no need
        for explicit registration for derived classes.

        Args:
            instance: source instance to convert to the destination type
        Return:
            An instance of the destination type obtained from the source instance
            Raises KeyError, if no suitable converter found
        """
        instance_type = type(instance)
        converter = cls._lookup_converter(instance_type)
        if converter is None:
            if cls.dst_type is None:  # pyre-ignore[16]
                output_type_str = "itself"
            else:
                output_type_str = cls.dst_type
            raise KeyError(f"Could not find converter from {instance_type} to {output_type_str}")
        return converter(instance, *args, **kwargs)


IntTupleBox = Tuple[int, int, int, int]


def make_int_box(box: torch.Tensor) -> IntTupleBox:
    int_box = [0, 0, 0, 0]
    int_box[0], int_box[1], int_box[2], int_box[3] = tuple(box.long().tolist())
    return int_box[0], int_box[1], int_box[2], int_box[3]