Spaces:
kadirnar
/
Runtime error

File size: 17,142 Bytes
938e515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
# Copyright (c) Facebook, Inc. and its affiliates.

import functools
import io
import struct
import types
import torch

from detectron2.modeling import meta_arch
from detectron2.modeling.box_regression import Box2BoxTransform
from detectron2.modeling.roi_heads import keypoint_head
from detectron2.structures import Boxes, ImageList, Instances, RotatedBoxes

from .c10 import Caffe2Compatible
from .caffe2_patch import ROIHeadsPatcher, patch_generalized_rcnn
from .shared import (
    alias,
    check_set_pb_arg,
    get_pb_arg_floats,
    get_pb_arg_valf,
    get_pb_arg_vali,
    get_pb_arg_vals,
    mock_torch_nn_functional_interpolate,
)


def assemble_rcnn_outputs_by_name(image_sizes, tensor_outputs, force_mask_on=False):
    """
    A function to assemble caffe2 model's outputs (i.e. Dict[str, Tensor])
    to detectron2's format (i.e. list of Instances instance).
    This only works when the model follows the Caffe2 detectron's naming convention.

    Args:
        image_sizes (List[List[int, int]]): [H, W] of every image.
        tensor_outputs (Dict[str, Tensor]): external_output to its tensor.

        force_mask_on (Bool): if true, the it make sure there'll be pred_masks even
            if the mask is not found from tensor_outputs (usually due to model crash)
    """

    results = [Instances(image_size) for image_size in image_sizes]

    batch_splits = tensor_outputs.get("batch_splits", None)
    if batch_splits:
        raise NotImplementedError()
    assert len(image_sizes) == 1
    result = results[0]

    bbox_nms = tensor_outputs["bbox_nms"]
    score_nms = tensor_outputs["score_nms"]
    class_nms = tensor_outputs["class_nms"]
    # Detection will always success because Conv support 0-batch
    assert bbox_nms is not None
    assert score_nms is not None
    assert class_nms is not None
    if bbox_nms.shape[1] == 5:
        result.pred_boxes = RotatedBoxes(bbox_nms)
    else:
        result.pred_boxes = Boxes(bbox_nms)
    result.scores = score_nms
    result.pred_classes = class_nms.to(torch.int64)

    mask_fcn_probs = tensor_outputs.get("mask_fcn_probs", None)
    if mask_fcn_probs is not None:
        # finish the mask pred
        mask_probs_pred = mask_fcn_probs
        num_masks = mask_probs_pred.shape[0]
        class_pred = result.pred_classes
        indices = torch.arange(num_masks, device=class_pred.device)
        mask_probs_pred = mask_probs_pred[indices, class_pred][:, None]
        result.pred_masks = mask_probs_pred
    elif force_mask_on:
        # NOTE: there's no way to know the height/width of mask here, it won't be
        # used anyway when batch size is 0, so just set them to 0.
        result.pred_masks = torch.zeros([0, 1, 0, 0], dtype=torch.uint8)

    keypoints_out = tensor_outputs.get("keypoints_out", None)
    kps_score = tensor_outputs.get("kps_score", None)
    if keypoints_out is not None:
        # keypoints_out: [N, 4, #kypoints], where 4 is in order of (x, y, score, prob)
        keypoints_tensor = keypoints_out
        # NOTE: it's possible that prob is not calculated if "should_output_softmax"
        # is set to False in HeatmapMaxKeypoint, so just using raw score, seems
        # it doesn't affect mAP. TODO: check more carefully.
        keypoint_xyp = keypoints_tensor.transpose(1, 2)[:, :, [0, 1, 2]]
        result.pred_keypoints = keypoint_xyp
    elif kps_score is not None:
        # keypoint heatmap to sparse data structure
        pred_keypoint_logits = kps_score
        keypoint_head.keypoint_rcnn_inference(pred_keypoint_logits, [result])

    return results


def _cast_to_f32(f64):
    return struct.unpack("f", struct.pack("f", f64))[0]


def set_caffe2_compatible_tensor_mode(model, enable=True):
    def _fn(m):
        if isinstance(m, Caffe2Compatible):
            m.tensor_mode = enable

    model.apply(_fn)


def convert_batched_inputs_to_c2_format(batched_inputs, size_divisibility, device):
    """
    See get_caffe2_inputs() below.
    """
    assert all(isinstance(x, dict) for x in batched_inputs)
    assert all(x["image"].dim() == 3 for x in batched_inputs)

    images = [x["image"] for x in batched_inputs]
    images = ImageList.from_tensors(images, size_divisibility)

    im_info = []
    for input_per_image, image_size in zip(batched_inputs, images.image_sizes):
        target_height = input_per_image.get("height", image_size[0])
        target_width = input_per_image.get("width", image_size[1])  # noqa
        # NOTE: The scale inside im_info is kept as convention and for providing
        # post-processing information if further processing is needed. For
        # current Caffe2 model definitions that don't include post-processing inside
        # the model, this number is not used.
        # NOTE: There can be a slight difference between width and height
        # scales, using a single number can results in numerical difference
        # compared with D2's post-processing.
        scale = target_height / image_size[0]
        im_info.append([image_size[0], image_size[1], scale])
    im_info = torch.Tensor(im_info)

    return images.tensor.to(device), im_info.to(device)


class Caffe2MetaArch(Caffe2Compatible, torch.nn.Module):
    """
    Base class for caffe2-compatible implementation of a meta architecture.
    The forward is traceable and its traced graph can be converted to caffe2
    graph through ONNX.
    """

    def __init__(self, cfg, torch_model, enable_tensor_mode=True):
        """
        Args:
            cfg (CfgNode):
            torch_model (nn.Module): the detectron2 model (meta_arch) to be
                converted.
        """
        super().__init__()
        self._wrapped_model = torch_model
        self.eval()
        set_caffe2_compatible_tensor_mode(self, enable_tensor_mode)

    def get_caffe2_inputs(self, batched_inputs):
        """
        Convert pytorch-style structured inputs to caffe2-style inputs that
        are tuples of tensors.

        Args:
            batched_inputs (list[dict]): inputs to a detectron2 model
                in its standard format. Each dict has "image" (CHW tensor), and optionally
                "height" and "width".

        Returns:
            tuple[Tensor]:
                tuple of tensors that will be the inputs to the
                :meth:`forward` method. For existing models, the first
                is an NCHW tensor (padded and batched); the second is
                a im_info Nx3 tensor, where the rows are
                (height, width, unused legacy parameter)
        """
        return convert_batched_inputs_to_c2_format(
            batched_inputs,
            self._wrapped_model.backbone.size_divisibility,
            self._wrapped_model.device,
        )

    def encode_additional_info(self, predict_net, init_net):
        """
        Save extra metadata that will be used by inference in the output protobuf.
        """
        pass

    def forward(self, inputs):
        """
        Run the forward in caffe2-style. It has to use caffe2-compatible ops
        and the method will be used for tracing.

        Args:
            inputs (tuple[Tensor]): inputs defined by :meth:`get_caffe2_input`.
                They will be the inputs of the converted caffe2 graph.

        Returns:
            tuple[Tensor]: output tensors. They will be the outputs of the
                converted caffe2 graph.
        """
        raise NotImplementedError

    def _caffe2_preprocess_image(self, inputs):
        """
        Caffe2 implementation of preprocess_image, which is called inside each MetaArch's forward.
        It normalizes the input images, and the final caffe2 graph assumes the
        inputs have been batched already.
        """
        data, im_info = inputs
        data = alias(data, "data")
        im_info = alias(im_info, "im_info")
        mean, std = self._wrapped_model.pixel_mean, self._wrapped_model.pixel_std
        normalized_data = (data - mean) / std
        normalized_data = alias(normalized_data, "normalized_data")

        # Pack (data, im_info) into ImageList which is recognized by self.inference.
        images = ImageList(tensor=normalized_data, image_sizes=im_info)
        return images

    @staticmethod
    def get_outputs_converter(predict_net, init_net):
        """
        Creates a function that converts outputs of the caffe2 model to
        detectron2's standard format.
        The function uses information in `predict_net` and `init_net` that are
        available at inferene time. Therefore the function logic can be used in inference.

        The returned function has the following signature:

            def convert(batched_inputs, c2_inputs, c2_results) -> detectron2_outputs

        Where

            * batched_inputs (list[dict]): the original input format of the meta arch
            * c2_inputs (tuple[Tensor]): the caffe2 inputs.
            * c2_results (dict[str, Tensor]): the caffe2 output format,
                corresponding to the outputs of the :meth:`forward` function.
            * detectron2_outputs: the original output format of the meta arch.

        This function can be used to compare the outputs of the original meta arch and
        the converted caffe2 graph.

        Returns:
            callable: a callable of the above signature.
        """
        raise NotImplementedError


class Caffe2GeneralizedRCNN(Caffe2MetaArch):
    def __init__(self, cfg, torch_model, enable_tensor_mode=True):
        assert isinstance(torch_model, meta_arch.GeneralizedRCNN)
        torch_model = patch_generalized_rcnn(torch_model)
        super().__init__(cfg, torch_model, enable_tensor_mode)

        try:
            use_heatmap_max_keypoint = cfg.EXPORT_CAFFE2.USE_HEATMAP_MAX_KEYPOINT
        except AttributeError:
            use_heatmap_max_keypoint = False
        self.roi_heads_patcher = ROIHeadsPatcher(
            self._wrapped_model.roi_heads, use_heatmap_max_keypoint
        )
        if self.tensor_mode:
            self.roi_heads_patcher.patch_roi_heads()

    def encode_additional_info(self, predict_net, init_net):
        size_divisibility = self._wrapped_model.backbone.size_divisibility
        check_set_pb_arg(predict_net, "size_divisibility", "i", size_divisibility)
        check_set_pb_arg(
            predict_net, "device", "s", str.encode(str(self._wrapped_model.device), "ascii")
        )
        check_set_pb_arg(predict_net, "meta_architecture", "s", b"GeneralizedRCNN")

    @mock_torch_nn_functional_interpolate()
    def forward(self, inputs):
        if not self.tensor_mode:
            return self._wrapped_model.inference(inputs)
        images = self._caffe2_preprocess_image(inputs)
        features = self._wrapped_model.backbone(images.tensor)
        proposals, _ = self._wrapped_model.proposal_generator(images, features)
        detector_results, _ = self._wrapped_model.roi_heads(images, features, proposals)
        return tuple(detector_results[0].flatten())

    @staticmethod
    def get_outputs_converter(predict_net, init_net):
        def f(batched_inputs, c2_inputs, c2_results):
            _, im_info = c2_inputs
            image_sizes = [[int(im[0]), int(im[1])] for im in im_info]
            results = assemble_rcnn_outputs_by_name(image_sizes, c2_results)
            return meta_arch.GeneralizedRCNN._postprocess(results, batched_inputs, image_sizes)

        return f


class Caffe2RetinaNet(Caffe2MetaArch):
    def __init__(self, cfg, torch_model):
        assert isinstance(torch_model, meta_arch.RetinaNet)
        super().__init__(cfg, torch_model)

    @mock_torch_nn_functional_interpolate()
    def forward(self, inputs):
        assert self.tensor_mode
        images = self._caffe2_preprocess_image(inputs)

        # explicitly return the images sizes to avoid removing "im_info" by ONNX
        # since it's not used in the forward path
        return_tensors = [images.image_sizes]

        features = self._wrapped_model.backbone(images.tensor)
        features = [features[f] for f in self._wrapped_model.head_in_features]
        for i, feature_i in enumerate(features):
            features[i] = alias(feature_i, "feature_{}".format(i), is_backward=True)
            return_tensors.append(features[i])

        pred_logits, pred_anchor_deltas = self._wrapped_model.head(features)
        for i, (box_cls_i, box_delta_i) in enumerate(zip(pred_logits, pred_anchor_deltas)):
            return_tensors.append(alias(box_cls_i, "box_cls_{}".format(i)))
            return_tensors.append(alias(box_delta_i, "box_delta_{}".format(i)))

        return tuple(return_tensors)

    def encode_additional_info(self, predict_net, init_net):
        size_divisibility = self._wrapped_model.backbone.size_divisibility
        check_set_pb_arg(predict_net, "size_divisibility", "i", size_divisibility)
        check_set_pb_arg(
            predict_net, "device", "s", str.encode(str(self._wrapped_model.device), "ascii")
        )
        check_set_pb_arg(predict_net, "meta_architecture", "s", b"RetinaNet")

        # Inference parameters:
        check_set_pb_arg(
            predict_net, "score_threshold", "f", _cast_to_f32(self._wrapped_model.test_score_thresh)
        )
        check_set_pb_arg(
            predict_net, "topk_candidates", "i", self._wrapped_model.test_topk_candidates
        )
        check_set_pb_arg(
            predict_net, "nms_threshold", "f", _cast_to_f32(self._wrapped_model.test_nms_thresh)
        )
        check_set_pb_arg(
            predict_net,
            "max_detections_per_image",
            "i",
            self._wrapped_model.max_detections_per_image,
        )

        check_set_pb_arg(
            predict_net,
            "bbox_reg_weights",
            "floats",
            [_cast_to_f32(w) for w in self._wrapped_model.box2box_transform.weights],
        )
        self._encode_anchor_generator_cfg(predict_net)

    def _encode_anchor_generator_cfg(self, predict_net):
        # serialize anchor_generator for future use
        serialized_anchor_generator = io.BytesIO()
        torch.save(self._wrapped_model.anchor_generator, serialized_anchor_generator)
        # Ideally we can put anchor generating inside the model, then we don't
        # need to store this information.
        bytes = serialized_anchor_generator.getvalue()
        check_set_pb_arg(predict_net, "serialized_anchor_generator", "s", bytes)

    @staticmethod
    def get_outputs_converter(predict_net, init_net):
        self = types.SimpleNamespace()
        serialized_anchor_generator = io.BytesIO(
            get_pb_arg_vals(predict_net, "serialized_anchor_generator", None)
        )
        self.anchor_generator = torch.load(serialized_anchor_generator)
        bbox_reg_weights = get_pb_arg_floats(predict_net, "bbox_reg_weights", None)
        self.box2box_transform = Box2BoxTransform(weights=tuple(bbox_reg_weights))
        self.test_score_thresh = get_pb_arg_valf(predict_net, "score_threshold", None)
        self.test_topk_candidates = get_pb_arg_vali(predict_net, "topk_candidates", None)
        self.test_nms_thresh = get_pb_arg_valf(predict_net, "nms_threshold", None)
        self.max_detections_per_image = get_pb_arg_vali(
            predict_net, "max_detections_per_image", None
        )

        # hack to reuse inference code from RetinaNet
        for meth in [
            "forward_inference",
            "inference_single_image",
            "_transpose_dense_predictions",
            "_decode_multi_level_predictions",
            "_decode_per_level_predictions",
        ]:
            setattr(self, meth, functools.partial(getattr(meta_arch.RetinaNet, meth), self))

        def f(batched_inputs, c2_inputs, c2_results):
            _, im_info = c2_inputs
            image_sizes = [[int(im[0]), int(im[1])] for im in im_info]
            dummy_images = ImageList(
                torch.randn(
                    (
                        len(im_info),
                        3,
                    )
                    + tuple(image_sizes[0])
                ),
                image_sizes,
            )

            num_features = len([x for x in c2_results.keys() if x.startswith("box_cls_")])
            pred_logits = [c2_results["box_cls_{}".format(i)] for i in range(num_features)]
            pred_anchor_deltas = [c2_results["box_delta_{}".format(i)] for i in range(num_features)]

            # For each feature level, feature should have the same batch size and
            # spatial dimension as the box_cls and box_delta.
            dummy_features = [x.clone()[:, 0:0, :, :] for x in pred_logits]
            # self.num_classess can be inferred
            self.num_classes = pred_logits[0].shape[1] // (pred_anchor_deltas[0].shape[1] // 4)

            results = self.forward_inference(
                dummy_images, dummy_features, [pred_logits, pred_anchor_deltas]
            )
            return meta_arch.GeneralizedRCNN._postprocess(results, batched_inputs, image_sizes)

        return f


META_ARCH_CAFFE2_EXPORT_TYPE_MAP = {
    "GeneralizedRCNN": Caffe2GeneralizedRCNN,
    "RetinaNet": Caffe2RetinaNet,
}