Spaces:
Running
Running
File size: 5,659 Bytes
cab0202 805c41e cab0202 805c41e cab0202 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import gradio as gr
import torch
from diffusers import DiffusionPipeline
from diffusion_webui.utils.model_list import stable_inpiant_model_list
class StableDiffusionInpaintGenerator:
def __init__(self):
self.pipe = None
def load_model(self, model_path):
if self.pipe is None or self.pipe.model_name != stable_model_path:
self.pipe = DiffusionPipeline.from_pretrained(
model_path, revision="fp16", torch_dtype=torch.float16
)
self.pipe.to("cuda")
self.pipe.enable_xformers_memory_efficient_attention()
return self.pipe
def generate_image(
self,
pil_image: str,
model_path: str,
prompt: str,
negative_prompt: str,
num_images_per_prompt: int,
guidance_scale: int,
num_inference_step: int,
seed_generator=0,
):
image = pil_image["image"].convert("RGB").resize((512, 512))
mask_image = pil_image["mask"].convert("RGB").resize((512, 512))
pipe = self.load_model(model_path)
if seed_generator == 0:
random_seed = torch.randint(0, 1000000, (1,))
generator = torch.manual_seed(random_seed)
else:
generator = torch.manual_seed(seed_generator)
output = pipe(
prompt=prompt,
image=image,
mask_image=mask_image,
negative_prompt=negative_prompt,
num_images_per_prompt=num_images_per_prompt,
num_inference_steps=num_inference_step,
guidance_scale=guidance_scale,
generator=generator,
).images
return output
def app():
with gr.Blocks():
with gr.Row():
with gr.Column():
stable_diffusion_inpaint_image_file = gr.Image(
source="upload",
tool="sketch",
elem_id="image_upload",
type="pil",
label="Upload",
).style(height=260)
stable_diffusion_inpaint_prompt = gr.Textbox(
lines=1,
placeholder="Prompt",
show_label=False,
)
stable_diffusion_inpaint_negative_prompt = gr.Textbox(
lines=1,
placeholder="Negative Prompt",
show_label=False,
)
stable_diffusion_inpaint_model_id = gr.Dropdown(
choices=stable_inpiant_model_list,
value=stable_inpiant_model_list[0],
label="Inpaint Model Id",
)
with gr.Row():
with gr.Column():
stable_diffusion_inpaint_guidance_scale = gr.Slider(
minimum=0.1,
maximum=15,
step=0.1,
value=7.5,
label="Guidance Scale",
)
stable_diffusion_inpaint_num_inference_step = (
gr.Slider(
minimum=1,
maximum=100,
step=1,
value=50,
label="Num Inference Step",
)
)
with gr.Row():
with gr.Column():
stable_diffusion_inpiant_num_images_per_prompt = gr.Slider(
minimum=1,
maximum=10,
step=1,
value=1,
label="Number Of Images",
)
stable_diffusion_inpaint_seed_generator = (
gr.Slider(
minimum=0,
maximum=1000000,
step=1,
value=0,
label="Seed(0 for random)",
)
)
stable_diffusion_inpaint_predict = gr.Button(
value="Generator"
)
with gr.Column():
output_image = gr.Gallery(
label="Generated images",
show_label=False,
elem_id="gallery",
).style(grid=(1, 2))
stable_diffusion_inpaint_predict.click(
fn=StableDiffusionInpaintGenerator().generate_image,
inputs=[
stable_diffusion_inpaint_image_file,
stable_diffusion_inpaint_model_id,
stable_diffusion_inpaint_prompt,
stable_diffusion_inpaint_negative_prompt,
stable_diffusion_inpiant_num_images_per_prompt,
stable_diffusion_inpaint_guidance_scale,
stable_diffusion_inpaint_num_inference_step,
stable_diffusion_inpaint_seed_generator,
],
outputs=[output_image],
)
|