File size: 5,342 Bytes
b89f196
1fc13a0
b89f196
2912bea
b89f196
ecd9090
f024495
2eb1363
967efaf
 
0250d76
 
 
 
 
 
 
 
b89f196
 
 
 
 
1fc13a0
 
 
 
 
 
 
b89f196
 
fac22d0
f2919d0
b89f196
 
1fc13a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a16552
 
 
1fc13a0
 
b89f196
1fc13a0
 
8a16552
1fc13a0
8a16552
 
1fc13a0
 
 
b89f196
 
 
f2919d0
cc56cce
22e810f
 
 
4f70fb9
2d3723a
 
 
 
 
 
 
 
 
 
 
 
f2919d0
2558ede
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2912bea
2558ede
 
b2e69a4
 
 
 
2558ede
f29ef8b
b2e69a4
 
dfbec24
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os
from googleapiclient.discovery import build
from lang import G4F
from fastapi import FastAPI, Request, Path
from pydantic import BaseModel
from fastapi.middleware.cors import CORSMiddleware
from ImageCreator import generate_image_prodia

app = FastAPI()

app.add_middleware(  # add the middleware
    CORSMiddleware,
    allow_credentials=True,  # allow credentials
    allow_origins=["*"],  # allow all origins
    allow_methods=["*"],  # allow all methods
    allow_headers=["*"],  # allow all headers
)


google_api_key = os.environ["GOOGLE_API_KEY"]
cse_id = os.environ["GOOGLE_CSE_ID"]
model = os.environ['default_model']

def search_google(query):
    service = build("customsearch", "v1", developerKey=google_api_key)
    result = service.cse().list(
        q=query,
        cx=cse_id
    ).execute()
    return result['items']


@app.get("/")
def hello():
    return "Hello! My name is Linlada."



def gpt_with_google_search(prompt):
    search_results = search_google(prompt)
    text = ""
    ref = ""
    for item in search_results:
        text += item['title'] + "\n" + item['snippet'] + "\n\n"
        ref += "- {} ({})\n".format(item['title'], item['link'])
    results = generate_text(f'Summarize: {text}')
    res = "{} \n\n {}".format(results, ref)
    return res

def gpt_with_google_search(prompt):
    search_results = search_google(prompt)
    text = ""
    ref = ""
    ref_count = 1
    for item in search_results:
        text += item['title'] + "\n" + item['snippet'] + "\n\n"
        ref += " [{}] {} ({})\n".format(ref_count, item['title'], item['link'])
        ref_count += 1
    results = generate_text(f'Summarize: {text}')
    res = "{} \n\n{}".format(results, ref)
    return res

class Linlada(BaseModel):
    prompt: str
    web_access: str 
    model: str = 'gpt-3.5-turbo'



@app.post('/linlada')
def linlada(request: Linlada):
    prompt = request.prompt
    model = request.model
    web_access = request.web_access
    llm = G4F(model=model)
    if web_access == "true":
       chat = gpt_with_google_search(prompt)
    else:
        chat = llm(prompt)
    return chat


class User(BaseModel):
    prompt: str
    model: str = None
    sampler: str = None
    seed: int = None
    neg: str = None

@app.post("/imagen")
def generate_image(request: User):
    prompt = request.prompt
    model = request.model
    sampler = request.sampler
    seed = request.seed
    neg = request.neg

    response = generate_image_prodia(prompt, model, sampler, seed, neg)
    return {"image": response}


details = {
    1: {'Absolute Reality V1.6': 'absolutereality_V16.safetensors [37db0fc3]',
        'Analog V1': 'analog-diffusion-1.0.ckpt [9ca13f02]',
        'Anything V3': 'anythingv3_0-pruned.ckpt [2700c435]',
        'Anything V4.5': 'anything-v4.5-pruned.ckpt [65745d25]',
        'Anything V5': 'anythingV5_PrtRE.safetensors [893e49b9]',
        'AbyssOrangeMix V3': 'AOM3A3_orangemixs.safetensors [9600da17]',
        'Deliberate V2': 'deliberate_v2.safetensors [10ec4b29]',
        'Dreamlike Diffusion V1': 'dreamlike-diffusion-1.0.safetensors [5c9fd6e0]',
        'Dreamlike Diffusion V2': 'dreamlike-diffusion-2.0.safetensors [fdcf65e7]',
        'Dreamshaper 6 baked vae': 'dreamshaper_6BakedVae.safetensors [114c8abb]',
        'Dreamshaper 7': 'dreamshaper_7.safetensors [5cf5ae06]',
        'Dreamshaper 8': 'dreamshaper_8.safetensors [9d40847d]',
        'Eimis Anime Diffusion V1.0': 'EimisAnimeDiffusion_V1.ckpt [4f828a15]',
        "Elldreth's Vivid": 'elldreths-vivid-mix.safetensors [342d9d26]',
        'Lyriel V1.6': 'lyriel_v16.safetensors [68fceea2]',
        'MechaMix V1.0': 'mechamix_v10.safetensors [ee685731]',
        'MeinaMix Meina V9': 'meinamix_meinaV9.safetensors [2ec66ab0]',
        'MeinaMix Meina V11': 'meinamix_meinaV11.safetensors [b56ce717]',
        'Openjourney V4': 'openjourney_V4.ckpt [ca2f377f]',
        'Portrait+ V1': 'portraitplus_V1.0.safetensors [1400e684]',
        'Realistic Vision V1.4': 'Realistic_Vision_V1.4-pruned-fp16.safetensors [8d21810b]',
        'Realistic Vision V4.0': 'Realistic_Vision_V4.0.safetensors [29a7afaa]',
        'Realistic Vision V5.0': 'Realistic_Vision_V5.0.safetensors [614d1063]',
        'Redshift Diffusion V1.0': 'redshift_diffusion-V10.safetensors [1400e684]',
        'ReV Animated V1.2.2': 'revAnimated_v122.safetensors [3f4fefd9]',
        'SD V1.4': 'sdv1_4.ckpt [7460a6fa]',
        'SD V1.5': 'v1-5-pruned-emaonly.ckpt [81761151]',
        "Shonin's Beautiful People V1.0": 'shoninsBeautiful_v10.safetensors [25d8c546]',
        "TheAlly's Mix II": 'theallys-mix-ii-churned.safetensors [5d9225a4]',
        'Timeless V1': 'timeless-1.0.ckpt [7c4971d4]'
    },
    2: {
        'Euler': 'Euler',
        'Euler a': 'Euler a',
        'Heun': 'Heun',
        'DPM++ 2M Karras': 'DPM++ 2M Karras',
        'DPM++ SDE Karras': 'DPM++ SDE Karras',
        'DDIM': 'DDIM'
    }
}

@app.get("/imagen-details/{detail_id}")
def image_detail(detail_id: int = Path(None, description="The ID of 1.model id and 2.sampler id", gt=0, lt=3)):
    return details[detail_id]

class Test(BaseModel):
    prompt: str
    model: str = 'gpt-3.5-turbo'
    neg: str = False

@app.post("/test")
def test(request: Test):
        return {'data': f'Prompt is {request.prompt} Model is {request.model} Neg is {request.neg}'}