Spaces:
Runtime error
Runtime error
File size: 2,142 Bytes
264b602 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import gradio as gr
from transformers import pipeline
task = "text-generation" # Specify the task as text generation
# model = "tiiuae/falcon-7b-instruct" # Use a specific model (option 1) or
model = "tiiuae/falcon-40b-instruct" # Use another specific model (option 2)
get_completion = pipeline(task=task, model=model, trust_remote_code=True) # Create a text generation pipeline
# Define a function to format the chat history and create a prompt for the chatbot
def format_chat_prompt(message, chat_history):
prompt = ""
for turn in chat_history:
user_message, bot_message = turn
prompt = f"{prompt}\nUser: {user_message}\nAssistant: {bot_message}"
prompt = f"{prompt}\nUser: {message}\nAssistant:"
return prompt
# Define a function to respond to the user's message
def respond(message, chat_history):
formatted_prompt = format_chat_prompt(message, chat_history)
# Generate a response using the specified model, given the formatted prompt
bot_message = get_completion(formatted_prompt,
max_new_tokens=1024,
# stop_sequences=["\nUser:", "<|endoftext|>"],
stop_sequences=["\nUser:", ""]).generated_text
chat_history.append((message, bot_message)) # Add the user and bot messages to the chat history
return "", chat_history
# Create a Gradio interface with UI components
with gr.Blocks() as demo:
chatbot = gr.Chatbot(height=240) # Create a chatbot UI component
msg = gr.Textbox(label="Prompt") # Create a textbox UI component for user input
btn = gr.Button("Submit") # Create a submit button UI component
# Create a clear button UI component that clears the console
clear = gr.ClearButton(components=[msg, chatbot], value="Clear console")
# Define the behavior of the submit button when clicked
btn.click(respond, inputs=[msg, chatbot], outputs=[msg, chatbot])
# Define the behavior of the enter key in the textbox (submit action)
msg.submit(respond, inputs=[msg, chatbot], outputs=[msg, chatbot])
# Launch the Gradio interface
demo.launch()
|