Spaces:
Runtime error
Runtime error
File size: 5,468 Bytes
d852a85 6e2b223 d852a85 6e2b223 d852a85 6e2b223 d852a85 a68efcd d852a85 f749b8c d852a85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
import gradio as gr
import paddle
import requests
import json
from ppdiffusers import StableDiffusionInpaintPipeline
from ppdiffusers import StableDiffusionImg2ImgPipeline
from ppdiffusers import PaintByExamplePipeline
from ppdiffusers.utils import load_image
pipe = None #全局变量,用于模型的导入
API_KEY = "j5HodGgjG2iQ87MenXrw2hot"
SECRET_KEY = "Ea1AYc1kjzv2MNExEZeMAEwzanDDlsdK"
def select_model(choice):#用于选择模型
global pipe
pipe = None
paddle.device.cuda.empty_cache() #释放GPU显存
if choice == '文本引导图片风格变化':
pipe1 = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
elif choice == '文本引导图像区域生成':
pipe1 = StableDiffusionInpaintPipeline.from_pretrained("stabilityai/stable-diffusion-2-inpainting")
elif choice == '文图引导图像区域生成':
pipe1 = PaintByExamplePipeline.from_pretrained("Fantasy-Studio/Paint-by-Example")
pipe = pipe1
return pipe1 #用于输出导入的模型相关信息
def get_access_token():
"""
使用 AK,SK 生成鉴权签名(Access Token)
:return: access_token,或是None(如果错误)
"""
url = "https://aip.baidubce.com/oauth/2.0/token"
params = {"grant_type": "client_credentials", "client_id": API_KEY, "client_secret": SECRET_KEY}
return str(requests.post(url, params=params).json().get("access_token"))
def translation(content): #可接受中文prompt 转换成英文
url = "https://aip.baidubce.com/rpc/2.0/mt/texttrans/v1?access_token=" + get_access_token()
payload = json.dumps({
"from": "zh",
"to": "en",
"q": content
})
headers = {
'Content-Type': 'application/json',
'Accept': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
i = response.text.find("dst")+6
j = response.text.find("src")-2
return response.text[i:j]
def diffusion_image(image,text,strength,guidance_scale,choice):
global pipe
text = translation(text)
if choice == '文本引导图片风格变化':
image = load_image(image).resize((768, 512))
with paddle.amp.auto_cast(True): # 使用fp16加快生成速度
img = pipe(prompt=text, image=image, strength=strength, guidance_scale=guidance_scale).images[0]
elif choice == '文本引导图像区域生成':
init_image = load_image(image).resize((512, 512))
mask_image = load_image(strength).resize((512, 512))
with paddle.amp.auto_cast(True): # 使用fp16加快生成速度
img = pipe(prompt=text, image=init_image, mask_image=mask_image).images[0]
elif choice == '文图引导图像区域生成':
init_image = load_image(image).resize((512, 512))
mask_image = load_image(strength).resize((512, 512))
example_image = load_image(guidance_scale).resize((512, 512))
with paddle.amp.auto_cast(True): # 使用fp16加快生成速度
img = pipe(image=init_image, mask_image=mask_image, example_image=example_image).images[0]
return img
options = ["文本引导图片风格变化", "文本引导图像区域生成", "文图引导图像区域生成"] # 定义下拉选项
def select_option(choice):
return select_model(choice)
with gr.Blocks(title='功能选择') as demo:
gr.Markdown("# 功能介绍")
gr.Markdown("根据提示输入,得到理想图像!")
with gr.Row():
pipeText = gr.Textbox(label ='模型信息')
with gr.Tab('加载模型'):
dropdown = gr.Dropdown(choices=options, label="选项") # 创建下拉选择框输入组件
sub_model = gr.Button("加载模型")
with gr.Row():
with gr.Tab('文本引导图片风格变化'):
in_img_1 = gr.Image(label='输入图片',type="filepath")
text_1 = gr.Textbox(label="输入文字")
strength_1 = gr.Slider(label="强度", minimum=0, maximum=1, step=0.01,value=0.75,
info="控制条件或指导文本的强度")
guidance_scale_1 = gr.Slider(label="权重", minimum=0, maximum=15, step=0.1,value=7.5,
info="条件或指导的权重")
sub_img_1 = gr.Button("生成图片")
with gr.Tab('文本引导图像区域生成'):
in_img_2 = gr.Image(label='输入图片',type="filepath")
strength_2 = gr.Image(label='输入掩码',type="filepath")
text_2 = gr.Textbox(label="输入文字")
sub_img_2 = gr.Button("生成图片")
with gr.Tab('文图引导图像区域生成'):
in_img_3 = gr.Image(label='输入图片',type="filepath")
strength_3 = gr.Image(label='输入掩码',type="filepath")
guidance_scale_3 = gr.Image(label='输入目标图片',type="filepath")
sub_img_3 = gr.Button("生成图片")
out_img=gr.Image(label='输出图片')
sub_model.click(fn =select_option,inputs=dropdown,outputs=pipeText)
sub_img_1.click(fn=diffusion_image, inputs=[in_img_1,text_1,strength_1,guidance_scale_1,dropdown], outputs=out_img)
sub_img_2.click(fn=diffusion_image, inputs=[in_img_2,text_2,strength_2,guidance_scale_1,dropdown], outputs=out_img)
demo.launch() |