Spaces:
Running
Running
File size: 10,067 Bytes
c58376d c64aaa1 c58376d c64aaa1 c58376d c64aaa1 c58376d c64aaa1 8e498cf c64aaa1 c58376d d2cc323 3b63443 c58376d 7a9aed4 1ce1efd d2cc323 1ce1efd c58376d 4dbff49 c58376d d2cc323 c58376d d2cc323 c58376d c07a3d1 c58376d c64aaa1 c58376d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
#!/usr/bin/env python3
#
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang)
#
# See LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# References:
# https://gradio.app/docs/#dropdown
import logging
import os
import shutil
import time
import uuid
from datetime import datetime
import gradio as gr
from examples import examples
from model import (
embedding2models,
get_file,
get_speaker_diarization,
read_wave,
speaker_segmentation_models,
)
embedding_frameworks = list(embedding2models.keys())
waves = [e[-1] for e in examples]
for name in waves:
filename = get_file(
"csukuangfj/speaker-embedding-models",
name,
)
shutil.copyfile(filename, name)
def MyPrint(s):
now = datetime.now()
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
print(f"{date_time}: {s}")
def convert_to_wav(in_filename: str) -> str:
"""Convert the input audio file to a wave file"""
out_filename = str(uuid.uuid4())
out_filename = f"{in_filename}.wav"
MyPrint(f"Converting '{in_filename}' to '{out_filename}'")
_ = os.system(
f"ffmpeg -hide_banner -loglevel error -i '{in_filename}' -ar 16000 -ac 1 '{out_filename}' -y"
)
return out_filename
def build_html_output(s: str, style: str = "result_item_success"):
return f"""
<div class='result'>
<div class='result_item {style}'>
{s}
</div>
</div>
"""
def process_uploaded_file(
embedding_framework: str,
embedding_model: str,
speaker_segmentation_model: str,
input_num_speakers: str,
input_threshold: str,
in_filename: str,
):
if in_filename is None or in_filename == "":
return "", build_html_output(
"Please first upload a file and then click "
'the button "submit for recognition"',
"result_item_error",
)
try:
input_num_speakers = int(input_num_speakers)
except ValueError:
return "", build_html_output(
"Please set a valid number of speakers",
"result_item_error",
)
if input_num_speakers <= 0:
try:
input_threshold = float(input_threshold)
if input_threshold < 0 or input_threshold > 10:
raise ValueError("")
except ValueError:
return "", build_html_output(
"Please set a valid threshold between (0, 10)",
"result_item_error",
)
else:
input_threshold = 0
MyPrint(f"Processing uploaded file: {in_filename}")
try:
return process(
in_filename=in_filename,
embedding_framework=embedding_framework,
embedding_model=embedding_model,
speaker_segmentation_model=speaker_segmentation_model,
input_num_speakers=input_num_speakers,
input_threshold=input_threshold,
)
except Exception as e:
MyPrint(str(e))
return "", build_html_output(str(e), "result_item_error")
def process(
embedding_framework: str,
embedding_model: str,
speaker_segmentation_model: str,
input_num_speakers: str,
input_threshold: str,
in_filename: str,
):
MyPrint(f"embedding_framework: {embedding_framework}")
MyPrint(f"embedding_model: {embedding_model}")
MyPrint(f"speaker_segmentation_model: {speaker_segmentation_model}")
MyPrint(f"input_num_speakers: {input_num_speakers}")
MyPrint(f"input_threshold: {input_threshold}")
MyPrint(f"in_filename: {in_filename}")
filename = convert_to_wav(in_filename)
now = datetime.now()
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
MyPrint(f"Started at {date_time}")
start = time.time()
audio, sample_rate = read_wave(filename)
MyPrint(f"audio, {audio.shape}, {sample_rate}")
sd = get_speaker_diarization(
segmentation_model=speaker_segmentation_model,
embedding_model=embedding_model,
num_clusters=input_num_speakers,
threshold=input_threshold,
)
MyPrint(f"{audio.shape[0] / sd.sample_rate}, {sample_rate}")
segments = sd.process(audio).sort_by_start_time()
s = ""
for seg in segments:
s += f"{seg.start:.3f} -- {seg.end:.3f} speaker_{seg.speaker:02d}\n"
date_time = now.strftime("%Y-%m-%d %H:%M:%S.%f")
end = time.time()
duration = audio.shape[0] / sd.sample_rate
rtf = (end - start) / duration
MyPrint(f"Finished at {date_time} s. Elapsed: {end - start: .3f} s")
info = f"""
Wave duration : {duration: .3f} s <br/>
Processing time: {end - start: .3f} s <br/>
RTF: {end - start: .3f}/{duration: .3f} = {rtf:.3f} <br/>
"""
if rtf > 1:
info += (
"<br/>We are loading the model for the first run. "
"Please run again to measure the real RTF.<br/>"
)
MyPrint(info)
MyPrint(f"\nembedding_model: {embedding_model}\nSegments: {s}")
return s, build_html_output(info)
title = "# Speaker diarization with Next-gen Kaldi"
description = """
This space shows how to do speaker diarization with Next-gen Kaldi.
It is running on CPU within a docker container provided by Hugging Face.
See more information by visiting
<https://k2-fsa.github.io/sherpa/onnx/speaker-diarization/index.html>
If you want to try it on Android, please download pre-built Android
APKs for speaker diarzation by visiting
<https://k2-fsa.github.io/sherpa/onnx/speaker-diarization/android.html>
---
Note about the two arguments:
- number of speakers: If you know the actual number of speakers in the input file,
please provide it. Otherwise, please set it to 0
- clustering threshold: Used only when number of speakers is 0. A larger
threshold results in fewer clusters, i.e., fewer speakers.
"""
# css style is copied from
# https://huggingface.co/spaces/alphacep/asr/blob/main/app.py#L113
css = """
.result {display:flex;flex-direction:column}
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%}
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start}
.result_item_error {background-color:#ff7070;color:white;align-self:start}
"""
def update_embedding_model_dropdown(framework: str):
if framework in embedding2models:
choices = embedding2models[framework]
return gr.Dropdown(
choices=choices,
value=choices[0],
interactive=True,
)
raise ValueError(f"Unsupported framework: {framework}")
demo = gr.Blocks(css=css)
with demo:
gr.Markdown(title)
embedding_framework_choices = list(embedding2models.keys())
embedding_framework_radio = gr.Radio(
label="Speaker embedding frameworks",
choices=embedding_framework_choices,
value=embedding_framework_choices[0],
)
embedding_model_dropdown = gr.Dropdown(
choices=embedding2models[embedding_framework_choices[0]],
label="Select a speaker embedding model",
value=embedding2models[embedding_framework_choices[0]][0],
)
embedding_framework_radio.change(
update_embedding_model_dropdown,
inputs=embedding_framework_radio,
outputs=embedding_model_dropdown,
)
speaker_segmentation_model_dropdown = gr.Dropdown(
choices=speaker_segmentation_models,
label="Select a speaker segmentation model",
value=speaker_segmentation_models[0],
)
input_num_speakers = gr.Textbox(
label="Number of speakers",
info="Number of speakers",
lines=1,
max_lines=1,
value="0",
placeholder="Specify number of speakers in the test file",
)
input_threshold = gr.Textbox(
label="Clustering threshold",
info="Threshold for clustering",
lines=1,
max_lines=1,
value="0.5",
placeholder="Clustering for threshold",
)
with gr.Tabs():
with gr.TabItem("Upload from disk"):
uploaded_file = gr.Audio(
sources=["upload"], # Choose between "microphone", "upload"
type="filepath",
label="Upload from disk",
)
upload_button = gr.Button("Submit for speaker diarization")
uploaded_output = gr.Textbox(label="Result from uploaded file")
uploaded_html_info = gr.HTML(label="Info")
gr.Examples(
examples=examples,
inputs=[
embedding_framework_radio,
embedding_model_dropdown,
speaker_segmentation_model_dropdown,
input_num_speakers,
input_threshold,
uploaded_file,
],
outputs=[uploaded_output, uploaded_html_info],
fn=process_uploaded_file,
)
upload_button.click(
process_uploaded_file,
inputs=[
embedding_framework_radio,
embedding_model_dropdown,
speaker_segmentation_model_dropdown,
input_num_speakers,
input_threshold,
uploaded_file,
],
outputs=[uploaded_output, uploaded_html_info],
)
gr.Markdown(description)
if __name__ == "__main__":
formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
logging.basicConfig(format=formatter, level=logging.INFO)
demo.launch()
|