File size: 4,098 Bytes
009ec32
 
 
33085cc
 
009ec32
 
 
 
33085cc
 
 
009ec32
 
33085cc
 
 
 
009ec32
33085cc
 
d46145c
33085cc
009ec32
33085cc
009ec32
 
33085cc
 
 
 
 
 
 
 
 
009ec32
33085cc
 
 
009ec32
33085cc
009ec32
 
 
 
 
 
6b7f648
009ec32
 
 
 
 
 
 
 
 
 
 
d46145c
009ec32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b7f648
009ec32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d46145c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
009ec32
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
#!/usr/bin/env python3
# Copyright    2023  Xiaomi Corp.        (authors: Fangjun Kuang)

import logging
import os
from functools import lru_cache

import numpy as np
import sherpa_onnx
import soundfile as sf
from huggingface_hub import hf_hub_download
import uuid


def convert_to_wav(in_filename: str) -> str:
    """Convert the input audio file to a wave file"""
    out_filename = str(uuid.uuid4())
    out_filename = f"{in_filename}.wav"

    logging.info(f"Converting '{in_filename}' to '{out_filename}'")
    _ = os.system(
        f"ffmpeg -hide_banner -loglevel error -i '{in_filename}' -ar 44100 -ac 2 '{out_filename}' -y"
    )

    return out_filename


def load_audio(filename):
    filename = convert_to_wav(filename)

    samples, sample_rate = sf.read(filename, dtype="float32", always_2d=True)
    samples = np.transpose(samples)
    # now samples is of shape (num_channels, num_samples)
    assert (
        samples.shape[1] > samples.shape[0]
    ), f"You should use (num_channels, num_samples). {samples.shape}"

    assert (
        samples.dtype == np.float32
    ), f"Expect np.float32 as dtype. Given: {samples.dtype}"

    return samples, sample_rate


@lru_cache(maxsize=10)
def get_file(
    repo_id: str,
    filename: str,
    subfolder: str = ".",
) -> str:
    nn_model_filename = hf_hub_download(
        repo_id=repo_id,
        filename=filename,
        subfolder=subfolder,
    )
    return nn_model_filename


@lru_cache(maxsize=30)
def load_model(name: str):
    name = name.split("|")[0]
    if "spleeter" in name:
        return load_spleeter_model(name)
    elif "UVR" in name:
        return load_uvr_model(name)

    raise ValueError(f"Unsupported model name {name}")


def load_uvr_model(name: str):
    model = get_file(
        repo_id="k2-fsa/sherpa-onnx-models",
        subfolder="source-separation-models",
        filename=name,
    )

    config = sherpa_onnx.OfflineSourceSeparationConfig(
        model=sherpa_onnx.OfflineSourceSeparationModelConfig(
            uvr=sherpa_onnx.OfflineSourceSeparationUvrModelConfig(
                model=model,
            ),
            num_threads=2,
            debug=False,
            provider="cpu",
        )
    )
    if not config.validate():
        raise ValueError("Please check your config.")

    return sherpa_onnx.OfflineSourceSeparation(config)


def load_spleeter_model(name: str):
    if "fp16" in name:
        suffix = "fp16.onnx"
    elif "int8" in name:
        suffix = "int8.onnx"
    else:
        suffix = "onnx"

    vocals = get_file(repo_id=f"csukuangfj/{name}", filename=f"vocals.{suffix}")
    accompaniment = get_file(
        repo_id=f"csukuangfj/{name}", filename=f"accompaniment.{suffix}"
    )

    config = sherpa_onnx.OfflineSourceSeparationConfig(
        model=sherpa_onnx.OfflineSourceSeparationModelConfig(
            spleeter=sherpa_onnx.OfflineSourceSeparationSpleeterModelConfig(
                vocals=vocals,
                accompaniment=accompaniment,
            ),
            num_threads=2,
            debug=False,
            provider="cpu",
        )
    )
    if not config.validate():
        raise ValueError("Please check your config.")

    return sherpa_onnx.OfflineSourceSeparation(config)


model_list = [
    "sherpa-onnx-spleeter-2stems|fastest",
    "sherpa-onnx-spleeter-2stems-fp16|fastest",
    "sherpa-onnx-spleeter-2stems-int8|fastest",
    "UVR_MDXNET_1_9703.onnx|slow",
    "UVR_MDXNET_2_9682.onnx|slow",
    "UVR_MDXNET_3_9662.onnx|slow",
    "UVR_MDXNET_9482.onnx|slow",
    "UVR_MDXNET_KARA.onnx|slow",
    "UVR_MDXNET_KARA_2.onnx|slowest",
    "UVR_MDXNET_Main.onnx|slowest",
    "UVR-MDX-NET-Inst_1.onnx|slowest",
    "UVR-MDX-NET-Inst_2.onnx|slowest",
    "UVR-MDX-NET-Inst_3.onnx|slowest",
    "UVR-MDX-NET-Inst_HQ_1.onnx|slowest",
    "UVR-MDX-NET-Inst_HQ_2.onnx|slowest",
    "UVR-MDX-NET-Inst_HQ_3.onnx|slowest",
    "UVR-MDX-NET-Inst_HQ_4.onnx|slowest",
    "UVR-MDX-NET-Inst_HQ_5.onnx|slowest",
    "UVR-MDX-NET-Inst_Main.onnx|slowest",
    "UVR-MDX-NET-Voc_FT.onnx|slowest",
    "UVR-MDX-NET_Crowd_HQ_1.onnx|slowest",
]