Spaces:
Running
Running
File size: 4,098 Bytes
009ec32 33085cc 009ec32 33085cc 009ec32 33085cc 009ec32 33085cc d46145c 33085cc 009ec32 33085cc 009ec32 33085cc 009ec32 33085cc 009ec32 33085cc 009ec32 6b7f648 009ec32 d46145c 009ec32 6b7f648 009ec32 d46145c 009ec32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
#!/usr/bin/env python3
# Copyright 2023 Xiaomi Corp. (authors: Fangjun Kuang)
import logging
import os
from functools import lru_cache
import numpy as np
import sherpa_onnx
import soundfile as sf
from huggingface_hub import hf_hub_download
import uuid
def convert_to_wav(in_filename: str) -> str:
"""Convert the input audio file to a wave file"""
out_filename = str(uuid.uuid4())
out_filename = f"{in_filename}.wav"
logging.info(f"Converting '{in_filename}' to '{out_filename}'")
_ = os.system(
f"ffmpeg -hide_banner -loglevel error -i '{in_filename}' -ar 44100 -ac 2 '{out_filename}' -y"
)
return out_filename
def load_audio(filename):
filename = convert_to_wav(filename)
samples, sample_rate = sf.read(filename, dtype="float32", always_2d=True)
samples = np.transpose(samples)
# now samples is of shape (num_channels, num_samples)
assert (
samples.shape[1] > samples.shape[0]
), f"You should use (num_channels, num_samples). {samples.shape}"
assert (
samples.dtype == np.float32
), f"Expect np.float32 as dtype. Given: {samples.dtype}"
return samples, sample_rate
@lru_cache(maxsize=10)
def get_file(
repo_id: str,
filename: str,
subfolder: str = ".",
) -> str:
nn_model_filename = hf_hub_download(
repo_id=repo_id,
filename=filename,
subfolder=subfolder,
)
return nn_model_filename
@lru_cache(maxsize=30)
def load_model(name: str):
name = name.split("|")[0]
if "spleeter" in name:
return load_spleeter_model(name)
elif "UVR" in name:
return load_uvr_model(name)
raise ValueError(f"Unsupported model name {name}")
def load_uvr_model(name: str):
model = get_file(
repo_id="k2-fsa/sherpa-onnx-models",
subfolder="source-separation-models",
filename=name,
)
config = sherpa_onnx.OfflineSourceSeparationConfig(
model=sherpa_onnx.OfflineSourceSeparationModelConfig(
uvr=sherpa_onnx.OfflineSourceSeparationUvrModelConfig(
model=model,
),
num_threads=2,
debug=False,
provider="cpu",
)
)
if not config.validate():
raise ValueError("Please check your config.")
return sherpa_onnx.OfflineSourceSeparation(config)
def load_spleeter_model(name: str):
if "fp16" in name:
suffix = "fp16.onnx"
elif "int8" in name:
suffix = "int8.onnx"
else:
suffix = "onnx"
vocals = get_file(repo_id=f"csukuangfj/{name}", filename=f"vocals.{suffix}")
accompaniment = get_file(
repo_id=f"csukuangfj/{name}", filename=f"accompaniment.{suffix}"
)
config = sherpa_onnx.OfflineSourceSeparationConfig(
model=sherpa_onnx.OfflineSourceSeparationModelConfig(
spleeter=sherpa_onnx.OfflineSourceSeparationSpleeterModelConfig(
vocals=vocals,
accompaniment=accompaniment,
),
num_threads=2,
debug=False,
provider="cpu",
)
)
if not config.validate():
raise ValueError("Please check your config.")
return sherpa_onnx.OfflineSourceSeparation(config)
model_list = [
"sherpa-onnx-spleeter-2stems|fastest",
"sherpa-onnx-spleeter-2stems-fp16|fastest",
"sherpa-onnx-spleeter-2stems-int8|fastest",
"UVR_MDXNET_1_9703.onnx|slow",
"UVR_MDXNET_2_9682.onnx|slow",
"UVR_MDXNET_3_9662.onnx|slow",
"UVR_MDXNET_9482.onnx|slow",
"UVR_MDXNET_KARA.onnx|slow",
"UVR_MDXNET_KARA_2.onnx|slowest",
"UVR_MDXNET_Main.onnx|slowest",
"UVR-MDX-NET-Inst_1.onnx|slowest",
"UVR-MDX-NET-Inst_2.onnx|slowest",
"UVR-MDX-NET-Inst_3.onnx|slowest",
"UVR-MDX-NET-Inst_HQ_1.onnx|slowest",
"UVR-MDX-NET-Inst_HQ_2.onnx|slowest",
"UVR-MDX-NET-Inst_HQ_3.onnx|slowest",
"UVR-MDX-NET-Inst_HQ_4.onnx|slowest",
"UVR-MDX-NET-Inst_HQ_5.onnx|slowest",
"UVR-MDX-NET-Inst_Main.onnx|slowest",
"UVR-MDX-NET-Voc_FT.onnx|slowest",
"UVR-MDX-NET_Crowd_HQ_1.onnx|slowest",
]
|